140 research outputs found

    Interventional bronchoscopy for benign tracheobronchial diseases under cardiopulmonary bypass support: case reports and literature review

    Get PDF
    The use of cardiopulmonary bypass as an adjunct to airway surgery for non-malignant diseases in adults is not well established in the UK. We are reporting two cases which demonstrate the additional benefits of using cardiopulmonary bypass during difficult bronchoscopy and complex airway stenting. The first case presents an emergency indication for cardiopulmonary bypass in a life-threatening but benign condition. The second case presented, utilises cardiopulmonary bypass standby as adjunct to a potentially life threatening procedure. A review of the literature is also provided

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies

    Deep sequencing reveals the complex and coordinated transcriptional regulation of genes related to grain quality in rice cultivars

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Milling yield and eating quality are two important grain quality traits in rice. To identify the genes involved in these two traits, we performed a deep transcriptional analysis of developing seeds using both massively parallel signature sequencing (MPSS) and sequencing-by-synthesis (SBS). Five MPSS and five SBS libraries were constructed from 6-day-old developing seeds of Cypress (high milling yield), LaGrue (low milling yield), Ilpumbyeo (high eating quality), YR15965 (low eating quality), and Nipponbare (control).</p> <p>Results</p> <p>The transcriptomes revealed by MPSS and SBS had a high correlation co-efficient (0.81 to 0.90), and about 70% of the transcripts were commonly identified in both types of the libraries. SBS, however, identified 30% more transcripts than MPSS. Among the highly expressed genes in Cypress and Ilpumbyeo, over 100 conserved <it>cis </it>regulatory elements were identified. Numerous specifically expressed transcription factor (TF) genes were identified in Cypress (282), LaGrue (312), Ilpumbyeo (363), YR15965 (260), and Nipponbare (357). Many key grain quality-related genes (i.e., genes involved in starch metabolism, aspartate amino acid metabolism, storage and allergenic protein synthesis, and seed maturation) that were expressed at high levels underwent alternative splicing and produced antisense transcripts either in Cypress or Ilpumbyeo. Further, a time course RT-PCR analysis confirmed a higher expression level of genes involved in starch metabolism such as those encoding ADP glucose pyrophosphorylase (AGPase) and granule bound starch synthase I (GBSS I) in Cypress than that in LaGrue during early seed development.</p> <p>Conclusion</p> <p>This study represents the most comprehensive analysis of the developing seed transcriptome of rice available to date. Using two high throughput sequencing methods, we identified many differentially expressed genes that may affect milling yield or eating quality in rice. Many of the identified genes are involved in the biosynthesis of starch, aspartate family amino acids, and storage proteins. Some of the differentially expressed genes could be useful for the development of molecular markers if they are located in a known QTL region for milling yield or eating quality in the rice genome. Therefore, our comprehensive and deep survey of the developing seed transcriptome in five rice cultivars has provided a rich genomic resource for further elucidating the molecular basis of grain quality in rice.</p

    The role of epigenetic dysregulation in the epidemic of allergic disease

    Get PDF
    The epidemic of allergic disease in early life is one of the clearest indicators that the developing immune system is vulnerable to modern environmental changes. A range of environmental exposures epidemiologically associated with allergic disease have been shown to have effects on the foetal immune function in pregnancy, including microbial burden, dietary changes and environmental pollutants. Preliminary studies now suggest that these early effects on immune development may be mediated epigenetically through a variety of processes that collectively modify gene expression and allergic susceptibility and that these effects are potentially heritable across generations. It is also possible that rising rates of maternal allergy, a recognised direct risk factor for infant allergic disease, may be further amplifying the effects of environmental changes. Whilst effective prevention strategies are the ultimate goal in reversing the allergy epidemic, the specific environmental drivers, target genes, and intracellular pathways and mechanisms of early life immune programming are still unclear. It is hoped that identifying genes that are differentially regulated in association with subsequent allergic disease will assist in identifying causal pathways and upstream contributing environmental factors. In this way, epigenetic paradigms are likely to provide valuable insights into how the early environment can be modified to more favourably drive immune development and reverse the allergic epidemic

    Enzymes immobilized in Langmuir-Blodgett films: Why determining the surface properties in Langmuir monolayer is important?

    Get PDF
    ABSTRACT In this review we discuss about the immobilization of enzymes in Langmuir-Blodgett films in order to determine the catalytic properties of these biomacromolecules when adsorbed on solid supports. Usually, the conformation of enzymes depends on the environmental conditions imposed to them, including the chemical composition of the matrix, and the morphology and thickness of the film. In this review, we show an outline of manuscripts that report the immobilization of enzymes as LB films since the 1980’s, and also some examples of how the surface properties of the floating monolayer prepared previously to the transfer to the solid support are important to determine the efficiency of the resulting device
    corecore