214 research outputs found
Clinical efficacy and safety of xiaoyao pill in post-stroke depression: A systematic review and meta-analysis of randomized controlled trials
Purpose: To review the efficacy and safety of the xiaoyao pill in the treatment of post-stroke depression.
Methods: A meta-analysis was conducted using eligible studies found in relevant electronic databases [e.g., Embase, Baidu Scholar, Google Scholar, PubMed, Cochrane Library, Science and Technology Periodical Database (VIP) in China, Chinese Biomedical Database, Wanfang, and China National Knowledge Infrastructure]. Statistical analyses were performed using Stata (version 12) and Review (version 5.3).
Results: Eleven articles with a total of 1007 patients were included in this study. Overall, the results of the published studies show that xiaoyao pill combined with conventional drug therapy increases clinical response by 20 %. In contrast, Hamilton Depression Scale score and Scandinavian Stroke Scale score were significantly (p < 0.05) lower in xiaoyao pill treatment group than in control group. As an adjuvant therapy, xiaoyao pill reduces potential adverse reactions, suggesting that it can be used as a supplementary therapy in the management of post-stroke depression patients.
Conclusion: The review and meta-analysis provide preliminarily proof that xiaoyao pill can improve the clinical symptoms of patients with post-stroke depression and has a higher safety profile than conventional drug therapy. These findings suggest that xiaoyao pill can be used as an alternative or complementary drug for the management of post-stroke depression
Inherent SM Voltage Balance for Multilevel Circulant Modulation in Modular Multilevel DC--DC Converters
The modularity of a modular multilevel dc converter (MMDC) makes it attractive for medium-voltage distribution systems. Inherent balance of submodule (SM) capacitor voltages is considered as an ideal property, which avoids a complex sorting process based on many measurements thereby reducing costs and enhancing reliability. This article extends the inherent balance concept previously shown for square-wave modulation to a multilevel version for MMDCs. A switching duty matrix dU is introduced: it is a circulant matrix of preset multilevel switching patterns with multiple stages and multiple durations. Inherent voltage balance is ensured with a full-rank dU . Circulant matrix theory shows that this is equivalent to a simplified common factor criterion. A nonfull rank dU causes clusters of SM voltage rather than a single common value, with the clusters indicated by the kernel of the matrix. A generalized coprime criterion is developed into several deductions that serve as practical guidance for design of multilevel circulant modulation. The theoretical development is verified through full-scale simulations and downscaled experiments. The effectiveness of the proposed circulant modulation in achieving SM voltage balance in an MMDC is demonstrated
Excitatory nucleo-olivary pathway shapes cerebellar outputs for motor control
The brain generates predictive motor commands to control the spatiotemporal precision of high-velocity movements. Yet, how the brain organizes automated internal feedback to coordinate the kinematics of such fast movements is unclear. Here we unveil a unique nucleo-olivary loop in the cerebellum and its involvement in coordinating high-velocity movements. Activating the excitatory nucleo-olivary pathway induces well-timed internal feedback complex spike signals in Purkinje cells to shape cerebellar outputs. Anatomical tracing reveals extensive axonal collaterals from the excitatory nucleo-olivary neurons to downstream motor regions, supporting integration of motor output and internal feedback signals within the cerebellum. This pathway directly drives saccades and head movements with a converging direction, while curtailing their amplitude and velocity via the powerful internal feedback mechanism. Our finding challenges the long-standing dogma that the cerebellum inhibits the inferior olivary pathway and provides a new circuit mechanism for the cerebellar control of high-velocity movements.</p
The Screening of the Protective Antigens of Aeromonas hydrophila Using the Reverse Vaccinology Approach: Potential Candidates for Subunit Vaccine Development
The threat of bacterial septicemia caused by Aeromonas hydrophila infection to aquaculture growth can be prevented through vaccination, but differences among A. hydrophila strains may affect the effectiveness of non-conserved subunit vaccines or non-inactivated A. hydrophila vaccines, making the identification and development of conserved antigens crucial. In this study, a bioinformatics analysis of 4268 protein sequences encoded by the A. hydrophila J-1 strain whole genome was performed based on reverse vaccinology. The specific analysis included signal peptide prediction, transmembrane helical structure prediction, subcellular localization prediction, and antigenicity and adhesion evaluation, as well as interspecific and intraspecific homology comparison, thereby screening the 39 conserved proteins as candidate antigens for A. hydrophila vaccine. The 9 isolated A. hydrophila strains from diseased fish were categorized into 6 different molecular subtypes via enterobacterial repetitive intergenic consensus (ERIC)-PCR technology, and the coding regions of 39 identified candidate proteins were amplified via PCR and sequenced to verify their conservation in different subtypes of A. hydrophila and other Aeromonas species. In this way, conserved proteins were screened out according to the comparison results. Briefly, 16 proteins were highly conserved in different A. hydrophila subtypes, of which 2 proteins were highly conserved in Aeromonas species, which could be selected as candidate antigens for vaccines development, including type IV pilus secretin PilQ (AJE35401.1) and TolC family outer membrane protein (AJE35877.1). The present study screened the conserved antigens of A. hydrophila by using reverse vaccinology, which provided basic foundations for developing broad-spectrum protective vaccines of A. hydrophila
A complementary approach for neocortical cytoarchitecture inspection with cellular resolution imaging at whole brain scale
Cytoarchitecture, the organization of cells within organs and tissues, serves as a crucial anatomical foundation for the delineation of various regions. It enables the segmentation of the cortex into distinct areas with unique structural and functional characteristics. While traditional 2D atlases have focused on cytoarchitectonic mapping of cortical regions through individual sections, the intricate cortical gyri and sulci demands a 3D perspective for unambiguous interpretation. In this study, we employed fluorescent micro-optical sectioning tomography to acquire architectural datasets of the entire macaque brain at a resolution of 0.65 μm × 0.65 μm × 3 μm. With these volumetric data, the cortical laminar textures were remarkably presented in appropriate view planes. Additionally, we established a stereo coordinate system to represent the cytoarchitectonic information as surface-based tomograms. Utilizing these cytoarchitectonic features, we were able to three-dimensionally parcel the macaque cortex into multiple regions exhibiting contrasting architectural patterns. The whole-brain analysis was also conducted on mice that clearly revealed the presence of barrel cortex and reflected biological reasonability of this method. Leveraging these high-resolution continuous datasets, our method offers a robust tool for exploring the organizational logic and pathological mechanisms of the brain’s 3D anatomical structure
NR2B phosphorylation at tyrosine 1472 contributes to brain injury in a rodent model of neonatal hypoxia-ischemia.
Background and purposeThe NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor is phosphorylated by the Src family kinase Fyn in brain, with tyrosine (Y) 1472 as the major phosphorylation site. Although Y1472 phosphorylation is important for synaptic plasticity, it is unknown whether it is involved in NMDA receptor-mediated excitotoxicity in neonatal brain hypoxia-ischemia (HI). This study was designed to elucidate the specific role of Y1472 phosphorylation of NR2B in neonatal HI in vivo and in NMDA-mediated neuronal death in vitro.MethodsNeonatal mice with a knockin mutation of Y1472 to phenylalanine (YF-KI) and their wild-type littermates were subjected to HI using the Vannucci model. Brains were scored 5 days later for damage using cresyl violet and iron staining. Western blotting and immunoprecipitation were performed to determine NR2B tyrosine phosphorylation. Expression of NADPH oxidase subunits and superoxide production were measured in vivo. NMDA-induced calcium response, superoxide formation, and cell death were evaluated in primary cortical neurons.ResultsAfter neonatal HI, YF-KI mice have reduced expression of NADPH oxidase subunit gp91phox and p47phox and superoxide production, lower activity of proteases implicated in necrotic and apoptotic cell death, and less brain damage when compared with the wild-type mice. In vitro, YF-KI mutation diminishes superoxide generation in response to NMDA without effect on calcium accumulation and inhibits NMDA and glutamate-induced cell death.ConclusionsUpregulation of NR2B phosphorylation at Y1472 after neonatal HI is involved in superoxide-mediated oxidative stress and contributes to brain injury
Effect of Grain Coalescence on Dislocation and Stress Evolution of GaN Films Grown on Nanoscale Patterned Sapphire Substrates
Two types of nucleation layers (NLs), including in-situ low-temperature grown
GaN (LT-GaN) and ex-situ sputtered physical vapor deposition AlN (PVD-AlN), are
applied on cone-shaped nanoscale patterned sapphire substrate (NPSS). The
initial growth process of GaN on these two NLs is comparably investigated by a
series of growth interruptions. The coalescence process of GaN grains is
modulated by adjusting the three-dimensional (3D) temperatures. The results
indicate that higher 3D temperatures reduce the edge dislocation density while
increasing the residual compressive stress in GaN films. Compared to the LT-GaN
NLs, the PVD-AlN NLs effectively resist Ostwald ripening and facilitate the
uniform growth of GaN grains on NPSS. Furthermore, GaN films grown on NPSS with
PVD-AlN NLs exhibit a reduction of over 50% in both screw and edge dislocation
densities compared to those grown on LT-GaN NLs. Additionally, PVD-AlN NLs
result in an increase of about 0.5 GPa in the residual compressive stress
observed in GaN films
Precise Fecal Microbiome of the Herbivorous Tibetan Antelope Inhabiting High-Altitude Alpine Plateau
The metataxonomic approach combining 16S rRNA gene amplicon sequencing using the PacBio Technology with the application of the operational phylogenetic unit (OPU) approach, has been used to analyze the fecal microbial composition of the high-altitude and herbivorous Tibetan antelopes. The fecal samples of the antelope were collected in Hoh Xil National Nature Reserve, at an altitude over 4500 m, the largest depopulated zone in Qinghai-Tibetan Plateau, China, where non-native animals or humans may experience life-threatening acute mountain sickness. In total, 104 antelope fecal samples were enrolled in this study, and were clustered into 61,258 operational taxonomic units (OTUs) at an identity of 98.7% and affiliated with 757 OPUs, including 144 known species, 256 potentially new species, 103 potentially higher taxa within known lineages. In addition, 254 comprised sequences not affiliating with any known family, and the closest relatives were unclassified lineages of existing orders or classes. A total of 42 out of 757 OPUs conformed to the core fecal microbiome, of which four major lineages, namely, un-cultured Ruminococcaceae, Lachnospiraceae, Akkermansia, and Christensenellaceae were associated with human health or longevity. The current study reveals that the fecal core microbiome of antelope is mainly composited of uncultured bacteria. The most abundant core taxa, namely, uncultured Ruminococcaceae, uncultured Akkermansia, uncultured Bacteroides, uncultured Christensenellaceae, uncultured Mollicutes, and uncultured Lachnospiraceae, may represent new bacterial candidates at high taxa levels, and several may have beneficial roles in health promotion or anti-intestinal dysbiosis. These organisms should be further isolated and evaluated for potential effect on human health and longevity
- …