911 research outputs found

    Orbital Order, Structural Transition and Superconductivity in Iron Pnictides

    Full text link
    We investigate the 16-band d-p model for iron pnictide superconductors in the presence of the electron-phonon coupling g with the orthorhombic mode which is crucial for reproducing the recently observed ultrasonic softening. Within the RPA, we obtain the ferro-orbital order below TQ which induces the tetragonal-orthorhombic structural transition at Ts = TQ, together with the stripe-type antiferromagnetic order below TN. Near the phase transitions, the system shows the s++ wave superconductivity due to the orbital fluctuation for a large g case with TQ > TN, while the s+- wave due to the magnetic fluctuation for a small g case with TQ < TN. The former case is consistent with the phase diagram of doped iron pnictides with Ts > TN.Comment: 5 pages, 5 figures, minor changes, published in J. Phys. Soc. Jp

    Fundamental properties of Tsallis relative entropy

    Get PDF
    Fundamental properties for the Tsallis relative entropy in both classical and quantum systems are studied. As one of our main results, we give the parametric extension of the trace inequality between the quantum relative entropy and the minus of the trace of the relative operator entropy given by Hiai and Petz. The monotonicity of the quantum Tsallis relative entropy for the trace preserving completely positive linear map is also shown without the assumption that the density operators are invertible. The generalized Tsallis relative entropy is defined and its subadditivity is shown by its joint convexity. Moreover, the generalized Peierls-Bogoliubov inequality is also proven

    THz Wave Propagation on Strip Lines: Devices, Properties, and Applications

    Get PDF
    We report the propagation characteristics of THz pulses on micro-strip-lines and coplanar strip-lines, in which low permittivity polymer materials are used as the dielectric layer or the substrate. As a result of the low attenuation and small dispersion in the devices, the spectral width up to 3 THz can be achieved even after the 1 mm propagation. Spectroscopic characterizations of liquid or powder specimens are demonstrated using the devices. We also show a possibility of realizing a very low attenuation using a quadrupole mode in three strip coplanar lines on the polymer substrate

    Short sample tests of full-scale superconducting conductors for Large Helical Device

    Get PDF
    Superconducting conductors are being developed for the helical coils of the Large Helical Device (LHD). From the test results on scale-down R&D conductors, one conductor, KISO-4B, was selected for its simple structure and good stability. Another conductor, Design-M, has been manufactured in its actual scale from the first. These two types of conductors were subjected to full-scale tests. A new method of measuring the current distribution inside the conductor was introduced. A pickup coil wound on the conductor detects the magnetic flux change in the conductor longitudinal direction and becomes a sensor to measure the current distribution. Using the test facility for full-scale conductors, the Design-M conductor has been tested with regard to the critical current and stability, and the uneven current distribution from the outer layer strands to the inner layer strands inside the conductor was observed. However, no degradation of the critical current was measure

    Study of Ni-doping Effect of Specific Heat and Transport Properties for LaFe1-yNiyAsO0.89F0.11

    Full text link
    Specific heats and transport quantities of the LaFe1-yNiyAsO0.89F0.11 system have been measured, and the results are discussed together with those reported previously by our group mainly for LaFe1-yCoyAsO0.89F0.11 and LaFeAsO0.89-xF0.11+x systems. The y dependence of the electronic specific heat coefficient gamma can basically be understood by using the rigid-band picture, where Ni ions provide 2 electrons to the host conduction bands and behave as nonmagnetic impurities. The superconducting transition temperature Tc of LaFe1-yNiyAsO0.89F0.11 becomes zero, as the carrier density p (=2y+0.11) doped to LaFeAsO reaches its critical value p_c_ ~0.2. This p_c_ value of ~0.2 is commonly observed for LaFe1-yCoyAsO0.89F0.11 and LaFeAsO0.89-xF0.11+x systems, in which the relations p = x+0.11 and p = y+0.11 hold, respectively. As we pointed out previously, the critical value corresponds to the disappearance of the hole-Fermi surface. These results indicate that the carrier number solely determines the Tc value. We have not observed appreciable effects of pair breaking, which originates from the nonmagnetic impurity scattering of conduction electrons and strongly suppresses T_c_ values of systems with sign-reversing of the order parameter over the Fermi surface(s). On the basis of the results, the so-called s_+-_ symmetry of the order parameter with the sign-reversing is excluded.Comment: 4 pages, 7 figures, submitted to J. Phys. Soc. Jpn, (modified version
    corecore