1,116 research outputs found
Quantum algebra in the mixed light pseudoscalar meson states
In this paper, we investigate the entanglement degrees of pseudoscalar meson
states via quantum algebra Y(su(3)). By making use of transition effect of
generators J of Y(su(3)), we construct various transition operators in terms of
J of Y(su(3)), and act them on eta-pion-eta mixing meson state. The
entanglement degrees of both the initial state and final state are calculated
with the help of entropy theory. The diagrams of entanglement degrees are
presented. Our result shows that a state with desired entanglement degree can
be achieved by acting proper chosen transition operator on an initial state.
This sheds new light on the connect among quantum information, particle physics
and Yangian algebra.Comment: 9 pages, 3 figure
Characterization of human metapneumoviruses isolated from patients in North America.
Human metapneumovirus (HMPV) was recently identified in The Netherlands and was linked to acute respiratory tract illness. In this study, 11 isolates from 10 patients with respiratory disease from Quebec, Canada, were tested by a reverse-transcriptase polymerase chain reaction based on the fusion protein gene. Identified sequences were consistent with HMPV. The patients were 2 months to 87 years of age (median age, 58 years) and presented with acute respiratory tract illness during the winter season. Sequence studies of the nucleocapsid, fusion, and polymerase genes identified 2 main lineages of HMPV and cocirculation of both lineages during the same year. These findings support a previous finding that HMPV is a human respiratory pathogen that merits further study
Statistical Model of Shape Moments with Active Contour Evolution for Shape Detection and Segmentation
This paper describes a novel method for shape representation and robust image segmentation. The proposed method combines two well known methodologies, namely, statistical shape models and active contours implemented in level set framework. The shape detection is achieved by maximizing a posterior function that consists of a prior shape probability model and image likelihood function conditioned on shapes. The statistical shape model is built as a result of a learning process based on nonparametric probability estimation in a PCA reduced feature space formed by the Legendre moments of training silhouette images. A greedy strategy is applied to optimize the proposed cost function by iteratively evolving an implicit active contour in the image space and subsequent constrained optimization of the evolved shape in the reduced shape feature space. Experimental results presented in the paper demonstrate that the proposed method, contrary to many other active contour segmentation methods, is highly resilient to severe random and structural noise that could be present in the data
Possible Supersymmetric Effects on Angular Distributions in Decays
We investigate the angular distributions of the rare B decay, , in general supersymmetric extensions of the standard
model. We consider the new physics contributions from the operators
in small invariant mass region of lepton pair. We show that the
azimuthal angle distribution of the decay can tell us the new physics effects
clearly from the behavior of the distribution, even if new physics does not
change the decay rate substantially from the standard model prediction
Pseudoscalar Higgs boson production associated with a single bottom quark at hadron colliders
We compute the complete next-to-leading order (NLO) SUSY-QCD corrections for
the associated production of a pseudoscalar Higgs boson with a bottom quark via
bottom-gluon fusion at the CERN Large Hadron Collider (LHC) and the Fermilab
Tevatron. We find that the NLO QCD correction in the MSSM reaches
at the LHC and at the Tevatron in our chosen parameter space
Transport by molecular motors in the presence of static defects
The transport by molecular motors along cytoskeletal filaments is studied
theoretically in the presence of static defects. The movements of single motors
are described as biased random walks along the filament as well as binding to
and unbinding from the filament. Three basic types of defects are
distinguished, which differ from normal filament sites only in one of the
motors' transition probabilities. Both stepping defects with a reduced
probability for forward steps and unbinding defects with an increased
probability for motor unbinding strongly reduce the velocities and the run
lengths of the motors with increasing defect density. For transport by single
motors, binding defects with a reduced probability for motor binding have a
relatively small effect on the transport properties. For cargo transport by
motors teams, binding defects also change the effective unbinding rate of the
cargo particles and are expected to have a stronger effect.Comment: 20 pages, latex, 7 figures, 1 tabl
Biochemical parameters of silver catfish (Rhamdia quelen) after transport with eugenol or essential oil of Lippia alba added to the water
The transport of live fish is a routine practice in aquaculture and constitutes a considerable source of stress to the animals. The addition of anesthetic to the water used for fish transport can prevent or mitigate the deleterious effects of transport stress. This study investigated the effects of the addition of eugenol (EUG) (1.5 or 3.0 mu L L-1) and essential oil of Lippia alba (EOL) (10 or 20 mu L L-1) on metabolic parameters (glycogen, lactate and total protein levels) in liver and muscle, acetylcholinesterase activity (AChE) in muscle and brain, and the levels of protein carbonyl (PC), thiobarbituric acid reactive substances (TBARS) and nonprotein thiol groups (NPSH) and activity of glutathione-S-transferase in the liver of silver catfish (Rhamdia quelen; Quoy and Gaimard, 1824) transported for four hours in plastic bags (loading density of 169.2 g L-1). The addition of various concentrations of EUG (1.5 or 3.0 mu L L-1) and EOL (10 or 20 mu L L-1) to the transport water is advisable for the transportation of silver catfish, since both concentrations of these substances increased the levels of NPSH antioxidant and decreased the TBARS levels in the liver. In addition, the lower liver levels of glycogen and lactate in these groups and lower AChE activity in the brain (EOL 10 or 20 mu L L-1) compared to the control group indicate that the energetic metabolism and neurotransmission were lower after administration of anesthetics, contributing to the maintenance of homeostasis and sedation status.Fundacao de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS/PRONEX) [10/0016-8]; Conselho Nacional de Pesquisa e Desenvolvimento Cientifico (CNPq) [470964/2009-0]; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); CNPqinfo:eu-repo/semantics/publishedVersio
Inflation on an Open Racetrack
We present a variant of warped D-brane inflation by incorporating multiple
sets of holomorphically-embedded D7-branes involved in moduli stabilization
with extent into a warped throat. The resultant D3-brane motion depends on the
D7-brane configuration and the relative position of the D3-brane in these
backgrounds. The non-perturbative moduli stabilization superpotential takes the
racetrack form, but the additional D3-brane open string moduli dependence
provides more flexibilities in model building. For concreteness, we consider
D3-brane motion in the warped deformed conifold with the presence of multiple
D7-branes, and derive the scalar potential valid for the entire throat. By
explicit tuning of the microphysical parameters, we obtain inflationary
trajectories near an inflection point for various D7-brane configurations.
Moreover, the open racetrack potential admits approximate Minkowski vacua
before uplifting. We demonstrate with a concrete D-brane inflation model where
the Hubble scale during inflation can exceed the gravitino mass. Finally, the
multiple sets of D7-branes present in this open racetrack setup also provides a
mechanism to stabilize the D3-brane to metastable vacua in the intermediate
region of the warped throat.Comment: 29 pages, 15 figures, pre-print number and references adde
Charged Higgs bosons in the Next-to MSSM (NMSSM)
The charged Higgs boson decays and
are studied in the framework of the next-to Minimal Supersymmetric Standard
Model (NMSSM). It is found that the decay rate for can
exceed the rates for the and channels both below and above
the top-bottom threshold. The dominance of is most readily
achieved when has a large doublet component and small mass. We also study
the production process at the LHC followed by the decay
which leads to the signature . We suggest
that is a promising discovery channel for a light charged
Higgs boson in the NMSSM with small or moderate and dominant decay
mode . This signature can also arise from
the Higgsstrahlung process followed by the decay . It is shown that there exist regions of parameter space where these
processes can have comparable cross sections and we suggest that their
respective signals can be distinguished at the LHC by using appropriate
reconstruction methods.Comment: 20 pages, 22 eps figures, more reference adde
Evolution and Flare Activity of Delta-Sunspots in Cycle 23
The emergence and magnetic evolution of solar active regions (ARs) of
beta-gamma-delta type, which are known to be highly flare-productive, were
studied with the SOHO/MDI data in Cycle 23. We selected 31 ARs that can be
observed from their birth phase, as unbiased samples for our study. From the
analysis of the magnetic topology (twist and writhe), we obtained the following
results. i) Emerging beta-gamma-delta ARs can be classified into three
topological types as "quasi-beta", "writhed" and "top-to-top". ii) Among them,
the "writhed" and "top-to-top" types tend to show high flare activity. iii) As
the signs of twist and writhe agree with each other in most cases of the
"writhed" type (12 cases out of 13), we propose a magnetic model in which the
emerging flux regions in a beta-gamma-delta AR are not separated but united as
a single structure below the solar surface. iv) Almost all the "writhed"-type
ARs have downward knotted structures in the mid portion of the magnetic flux
tube. This, we believe, is the essential property of beta-gamma-delta ARs. v)
The flare activity of beta-gamma-delta ARs is highly correlated not only with
the sunspot area but also with the magnetic complexity. vi) We suggest that
there is a possible scaling-law between the flare index and the maximum umbral
area
- …