1,298 research outputs found

    Collision of two liquid wedges

    Get PDF

    Di-μ-aqua-bis­[diaqua­bis(thio­cyanato-κN)iron(II)] 4-(4-chloro­phen­yl)-1,2,4-triazole hexa­solvate

    Get PDF
    The title complex, [Fe2(NCS)4(H2O)6]·6C8H6ClN3, comprises two distorted octa­hedral iron(II) centers straddling a crystallographic inversion center and bridged by two aqua O atoms to form a quadrilateral core. The aqua O atom of the core is involved in hydrogen bonds with the triazole N atoms of the solvent mol­ecules, generating one-dimensional ladder motifs, and three inter­molecular C—H⋯S hydrogen bonds, forming a three-dimensional hydrogen-bonding network

    Glycosylation characterization of therapeutic mAbs by top- and middle-down mass spectrometry

    Get PDF
    A reference monoclonal antibody IgG1 and a fusion IgG protein were analyzed by top- and middle-down mass spectrometry with multiple fragmentation techniques including electron transfer dissociation (ETD) and matrix-assisted laser desorption ionization in-source decay (MALDI-ISD) to investigate heterogeneity of glycosylated protein species. Specifically, glycan structure, sites, relative abundance levels, and termini structural conformation were investigated by use of Fourier transform ion cyclotron resonance (FT-ICR) or high performance liquid chromatography electrospray ionization (HPLC-ESI) linked to an Orbitrap. Incorporating a limited enzymatic digestion by immunoglobulin G-degrading enzyme Streptococcus pyogenes (IdeS) with MALDI-ISD analysis extended sequence coverage of the internal region of the proteins without pre-fractionation. The data in this article is associated with the research article published in Journal of Proteomics (Tran et al., 2015)

    Stellar and AGN feedback in isolated early-type galaxies: the role in regulating star formation and ISM properties

    Full text link
    Understanding how galaxies maintain the inefficiency of star formation with physically self-consistent models is a central problem for galaxy evolution. Although numerous theoretical models have been proposed in recent decades, the debate still exists. By means of high-resolution two-dimensional hydrodynamical simulations, we study the three feedback effects (the stellar wind heating, SNe feedback, and AGN feedback) in suppressing star formation activities on the evolution of early-type galaxies with different stellar masses. AGN feedback models are updated based on \citet{Yuan2018}. The gas sources comes exclusively from the mass losses of dying low-mass stars for most of our models. We find that SNe feedback can keep star formation at a significantly low level for low mass elliptical galaxies for a cosmological evolution time. For the high mass galaxies, AGN feedback can efficiently offset the radiative cooling and thus regulate the star formation activities. Such a suppression of star formation is extremely efficient in the inner region of the galaxies. AGB heating cannot account for this suppression for low and high mass galaxies. The X-ray temperature TXT_{\rm X} and luminosity LXL_{\rm X} of hot plasma can be in agreement with the observed data with the inclusion of effective feedback processes. These results thus suggest that we can use TXT_{\rm X} and LXL_{\rm X} to probe the role of different feedback processes. The inclusion of additional gas sources can make the mass scale between SNe and AGN feedback dominating in suppressing star formation decrease to an observationally inferred value of a few 1010 M10^{10}~M_{\odot}.Comment: 21 pages, 15 figures, accepted for publication in Ap

    Astrometry of Water Maser Sources in Nearby Molecular Clouds with VERA - II. SVS 13 in NGC 1333

    Full text link
    We report on the results of multi-epoch VLBI observations with VERA (VLBI Exploration of Radio Astrometry) of the 22 GHz H2O masers associated with the young stellar object SVS 13 in the NGC 1333 region. We have carried out phase-referencing VLBI astrometry and measured an annual parallax of the maser features in SVS 13 of 4.25+/-0.32 mas, corresponding to the distance of 235+/-18 pc from the Sun. Our result is consistent with a photometric distance of 220 pc previously reported. Even though the maser features were detectable only for 6 months, the present results provide the distance to NGC 1333 with much higher accuracy than photometric methods. The absolute positions and proper motions have been derived, revealing that the H2O masers with the LSR (local standard of rest) velocities of 7-8 km s-1 are most likely associated with VLA4A, which is a radio counterpart of SVS 13. The origin of the observed proper motions of the maser features are currently difficult to attribute to either the jet or the rotating circumstellar disk associated with VLA4A, which should be investigated through future high-resolution astrometric observations of VLA4A and other radio sources in NGC 1333.Comment: 9 pages, 5 figures. PASJ, in press (2008, Vol. 60, No. 1

    Astrometry of Galactic Star Forming Region Sharpless 269 with VERA : Parallax Measurements and Constraint on Outer Rotation Curve

    Full text link
    We have performed high-precision astrometry of H2O maser sources in Galactic star forming region Sharpless 269 (S269) with VERA. We have successfully detected a trigonometric parallax of 189+/-8 micro-arcsec, corresponding to the source distance of 5.28 +0.24/-0.22 kpc. This is the smallest parallax ever measured, and the first one detected beyond 5 kpc. The source distance as well as proper motions are used to constrain the outer rotation curve of the Galaxy, demonstrating that the difference of rotation velocities at the Sun and at S269 (which is 13.1 kpc away from the Galaxy's center) is less than 3%. This gives the strongest constraint on the flatness of the outer rotation curve and provides a direct confirmation on the existence of large amount of dark matter in the Galaxy's outer disk.Comment: 7 pages and 4 figures, Accepted by PASJ (Vol. 59, No. 5, October 25, 2007 issue

    Distance to Orion KL Measured with VERA

    Full text link
    We present the initial results of multi-epoch VLBI observations of the 22 GHz H2O masers in the Orion KL region with VERA (VLBI Exploration of Radio Astrometry). With the VERA dual-beam receiving system, we have carried out phase-referencing VLBI astrometry and successfully detected an annual parallax of Orion KL to be 2.29+/-0.10 mas, corresponding to the distance of 437+/-19 pc from the Sun. The distance to Orion KL is determined for the first time with the annual parallax method in these observations. Although this value is consistent with that of the previously reported, 480+/-80 pc, which is estimated from the statistical parallax method using proper motions and radial velocities of the H2O maser features, our new results provide the much more accurate value with an uncertainty of only 4%. In addition to the annual parallax, we have detected an absolute proper motion of the maser feature, suggesting an outflow motion powered by the radio source I along with the systematic motion of source I itself.Comment: 7 pages, 3 figures. PASJ, in press (Vol. 59, No. 5, October 25, 2007 issue

    Absolute Proper Motions of H2O Masers Away from the Galactic Plane Measured with VERA in the "Superbubble" Region NGC 281

    Full text link
    We report on absolute proper-motion measurements of an H2O maser source in the NGC 281 West molecular cloud, which is located ~320 pc above the Galactic plane and is associated with an HI loop extending from the Galactic plane. We have conducted multi-epoch phase-referencing observations of the maser source with VERA (VLBI Exploration of Radio Astrometry) over a monitoring period of 6 months since May 2006. We find that the H2O maser features in NGC 281 West are systematically moving toward the southwest and further away from the Galactic plane with a vertical velocity of ~20-30 km/s at its estimated distance of 2.2-3.5 kpc. Our new results provide the most direct evidence that the gas in the NGC 281 region on the HI loop was blown out from the Galactic plane, most likely in a superbubble driven by multiple or sequential supernova explosions in the Galactic plane.Comment: 10 pages, 5 figures, PASJ in press (Vol. 59, No. 4; August 25, 2007 issue
    corecore