96 research outputs found

    Dynamics of autodyne response formation in microwave generators

    Full text link
    The paper presents results of studying the dynamics of autodyne response formation when switching on a radio-pulse microwave generator which is subject to the influence of its own reflection radiation. Basic relations for a step-wise calculation of autodyne response as a function of time delay, autodyne response time constant, distortion parameter and intrinsic parameters of the self-oscillating system are obtained. Calculation and analysis of peculiarities of autodyne signal generation by radio-pulse oscillator are conducted for the cases of motionless and moving reflecting object under relatively low, medium and high inertia properties of the oscillator if compared to the propagation time of the reflected radiation. Experimental research results that confirm conclusions of theoretical analysis are obtained for a common hybrid-integrated autodyne TIGEL-08 module of the 8-mm frequency-range implemented on a planar two-meza Gunn diodes and the same module stabilized by the external high-Q resonator. Β© 2013 Allerton Press, Inc

    Analysis of signals of stabilized autodynes

    Get PDF
    Results of the autodyne signal analysis of the self-oscillating systems stabilized in frequency by the external high-quality cavity are given. The coupling between the main and stabilizing cavities is realized on the basis of a pass-reflective filter with a resistive link. Mathematical equations are obtained describing an autodyne response onto impact of the own radiated signal reflected from a target. The analysis of phase, amplitude, frequency and amplitude-frequency characteristics of the autodyne system is fulfilled. The calculation of an autodyne signal spectrum is discussed. A new type of nonlinear distortions of an autodyne signal is examined, which is caused by a frequency dispersion of an oscillating system of the stabilized autodyne. Advantages of the stabilized autodyne compared to the usual single-tuned autodyne oscillator are shown

    Determination of autodyne oscillator parameters by the beating method

    Get PDF
    The research results of oscillator internal parameters influence the features of dynamic autodyne characteristics formation in the case of external oscillator signal influence are presented. The equivalent circuit with a single-circuit oscillating system is considered as a model of the autodyne oscillator. Abbreviated equations are obtained by an averaging method and then they are linearized for small disturbances in a vicinity of the steady-state mode. The obtained characteristics for the beating mode are compared with characteristics of autodynes for short-range radar technology. The essential differences in behavior of the oscillator with acting the external oscillator and the oscillator with acting the own reflected signal have been found. The physical sense of the frequency dispersion phenomenon for the autodyne frequency deviation in the vicinity of hypothetical β€œzero” beating is discovered. The research results of dynamic autodyne characteristics in the frequency conversion mode of signals modulated on amplitude or frequency are given. It is shown that to suppress the spurious harmonics of the beating frequency, it is advisable to take additional measures for generated frequency stabilization in autodyne frequency converters, for instance, using the external feedback in the oscillator or using the external high-Q resonator. The adequacy of theoretical conclusions is confirmed by results of experimental investigations of the hybrid-integrated module of 8 mm-range made on the basis of the planar two-meza Gunn diode. Oscillator characteristics obtained by the beating method are compared with results of investigation fulfilled with the help of modulation characteristics. It is shown that errors in experimental determination of dynamic characteristics of autodyne oscillators caused by frequency limitations of a pin-diode typical for the modulation characteristic method can be eliminated. Problems of practical application of obtained results in real radar systems using autodyne oscillators are discussed

    Modulation characteristics of microwave autodyne oscillators

    Get PDF
    General relations for the analysis of autodyne and modulation characteristics are obtained in the form of differential equations with the retarded argument. Solutions for characteristics of frequency response of autodyne variations of the oscillation amplitude and phase as well as the auto-detecting signal of UHF oscillator under influence of the proper reflected radiation are derived. The solution of the same equation system is given for frequency responses of the modulation deepness of oscillation amplitude and frequency as well as the auto-detecting signal in the case of the reflection factor modulation by the high-frequency signal. Calculations of autodyne and modulation characteristics are fulfilled at different values of inherent parameters of UHF oscillators. Non-isochronous and non-isodromous properties of autodyne oscillators are investigated. Phenomena of frequency auto-detecting are considered. A method for dynamic properties determination is substantiated according to its modulation characteristics at the oscillation amplitude registration. The results of theoretical analysis are confirmed by experimental data obtained on the example of hybrid-integrated oscillator of 8mm-range on the Gunn diode

    Theory of stabilized autodyne oscillators at the large reflected signal

    Get PDF
    Research results on autodyne oscillator stabilized by an external high-Q cavity are presented for the case of the large reflected signal, when amplitude of the reflected wave is commensurable with amplitude of natural oscillations. Expressions describing an autodyne response of the oscillator on the influence of the proper radiation reflected from a target are obtained. Calculations of amplitude, frequency and spectral characteristics of the autodyne system are performed. Conditions of exact tuning of the stabilized cavity are determined. Investigations of stabilized autodyne parameters at small distance to the reflected object are provided. It is shown that to expand the dynamic range of the autodyne system it is expedient to use the large coupling between cavities. Recommendations concerning practical application of the obtained results in the short-range radar are given

    ВлияниС мСталличСского стСрТня Π²Π½ΡƒΡ‚Ρ€ΠΈ сфСричСской Π»ΠΈΠ½Π·Ρ‹ Π›ΡŽΠ½Π΅Π±Π΅Ρ€Π³Π° Π½Π° Π΅Π΅ характСристики

    Get PDF
    The paper discusses the option of installing a load-bearing element inside a spherical Luneberg lens (LL). The presence of a metal element inside the LL will increase the structural rigidity of the spherical antenna and thereby expand the scope of use of the LL at various mobile communications and radar facilities with severe operating conditions. The influence of a metal rod inside the main spherical structure on the radiation pattern in two main planes in the linear polarization mode and on the diffraction pattern of the radiation field is estimated. The results of the analysis of the directional characteristics and the diffraction pattern of the LL radiation field were obtained using modeling in the Ansys Electronics Desktop (HFSS Design) working environment, as well as mathematical modeling using the Green tensor function method. At the same time, the obtained mathematical relations can be used in the future to solve the problem of finding the optimal size and position of a metal element in the sphere of LL.Β Denisov D. V., Noskov V. Ya. The influence of a metal rod inside a spherical Luneberg lens on its characteristics. Ural Radio Engineering Journal. 2022;6(2):160–185. (In Russ.) DOI: 10.15826/urej.2022.6.2.003.Β Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ обсуТдаСтся Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ инсталляции нСсущСго элСмСнта Π²Π½ΡƒΡ‚Ρ€ΡŒ сфСричСской Π»ΠΈΠ½Π·Ρ‹ Π›ΡŽΠ½Π΅Π±Π΅Ρ€Π³Π° (Π›Π›). НаличиС мСталличСского элСмСнта Π²Π½ΡƒΡ‚Ρ€ΠΈ Π›Π› ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΠΊΠΎΠ½ΡΡ‚Ρ€ΡƒΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ ΠΆΠ΅ΡΡ‚ΠΊΠΎΡΡ‚ΡŒ сфСричСской Π°Π½Ρ‚Π΅Π½Π½Ρ‹ ΠΈ Ρ‚Π΅ΠΌ самым Ρ€Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ использования Π›Π› Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°Ρ… ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΉ связи ΠΈ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΈ с тяТСлыми условиями эксплуатации. ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ ΠΎΡ†Π΅Π½ΠΊΠ° влияния мСталличСского стСрТня Π²Π½ΡƒΡ‚Ρ€ΠΈ основной сфСричСской конструкции Π½Π° Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌΡƒ направлСнности Π² Π΄Π²ΡƒΡ… основных плоскостях Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ поляризации ΠΈ Π½Π° ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Ρƒ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΈ поля излучСния. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° характСристик направлСнности ΠΈ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Ρ‹ поля излучСния Π›Π› ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ модСлирования Π² Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ срСдС Ansys Electronics Desktop (HFSS Design), Π° Ρ‚Π°ΠΊΠΆΠ΅ матСматичСским ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Ρ‚Π΅Π½Π·ΠΎΡ€Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π“Ρ€ΠΈΠ½Π°. ΠŸΡ€ΠΈ этом ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ матСматичСскиС ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π² дальнСйшСм для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ поиска ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² ΠΈ полоТСния мСталличСского элСмСнта Π² сфСрС Π›Π›

    Moving Object Signal Analysis of Autodyne Radars with Linear Types of Frequency

    Full text link
    ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования особСнностСй формирования сигналов Π°Π²Ρ‚ΠΎΠ΄ΠΈΠ½Π½ΠΎΠΉ систСмы Π±Π»ΠΈΠΆΠ½Π΅ΠΉ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΈ с Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ частотной модуляциСй для двиТущСгося ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π΅Π³ΠΎ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ основныС ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ вычислСния Π°Π²Ρ‚ΠΎΠ΄ΠΈΠ½Π½Ρ‹Ρ… сигналов для случаСв, ΠΊΠΎΠ³Π΄Π° ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΈΡ… ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ большС Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ запаздывания ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ излучСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ для случаСв, ΠΊΠΎΠ³Π΄Π° Π΄Π°Π½Π½ΠΎΠ΅ нСравСнство Π½Π΅ выполняСтся. РассмотрСны особСнности сигналов для ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ°ΡŽΡ‰Π΅Π³ΠΎΡΡ ΠΈ ΡƒΠ΄Π°Π»ΡΡŽΡ‰Π΅Π³ΠΎΡΡ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π½Π° Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π΅, Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠΌ Π½Π° Π΄ΠΈΠΎΠ΄Π΅ Π“Π°Π½Π½Π° 8‑мм Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° с пСрСстройкой частоты ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ Π²Π°Ρ€ΠΈΠΊΠ°ΠΏΠ°.General equations for analysis of the signal formation peculiarities are obtained for the autodyne short-range radar (ASRR) systems both for the case of the fixed and moving reflecting object, using arbitrary types of frequency modulation (FM). The developed mathematical model anticipates the interaction analysis of ASRR with the reflected emission at arbitrary ratio of the delay time Ο„ of the reflected emission and the autodyne signal period Ta. Signal features for the oncoming and outcoming object are considered. The experimental data are obtained on the oscillator made on the 8mm-Gunn diode with the varicap frequency tuning. The fulfilled calculations and experimental investigations of ASRR signals for linear types of FM show that the autodyne frequency both for the moving and fixed reflector exactly corresponds to the frequency of transformed signal obtained in the case of the homodyne system. However, the presence of autodyne signal distortions requires the account in the signal processing devices under conditions, when the distance to the reflecting object is small, and the feedback parameter Cfb is commensurable to 1. The obtained results of autodyne characteristic research in the case when the autodyne signal period is commensurable or even less than delay time show that the distortion of autodyne signal at hypothetical keeping of the reflected amplitude decreases with distance growth. The calculations show that if the feedback parameter exceeds some boundary value even in several times, in higher operation zones of ASRR with FM operation can be provided with formation of quasi-harmonic signals. The obtained analysis results are developed and supplemented of results of known investigations, which were published in previous papers. Revealed regulations of signal formation in ASRR with FM have enough general characteristics and physical interpretation on the base of the step method known in systems with delay. In this connection, the obtained results in this paper can be used in the calculations of autodyne system signals made on semiconductor laser modules with FM

    Optimal choice of prophylactic anticoagulant therapy for nonvalvular atrial fibrillation in the context of COVID-19 pandemic

    Get PDF
    Already at the very beginning of COVID-19 pandemic, it became known about the key clinical and pathogenetic significance of immunopathological reactions and disorders of hemostasis. Specific coagulopathy, microvascular thromboinflammatory organ damage, macrothrombosis and thromboembolism in the acute period of COVID-19, as well as secondary hemostasis disorders in convalescents, actualize the issues of caring patients with cardiovascular disease. COVID-19 not only increases the risk of thromboembolic events for patients with previously identified arrhythmias, but can also indirectly cause it (as a complication of infection or therapy). The aim of this work was to summarize the data and substantiate the optimal choice of prophylactic anticoagulant therapy for nonvalvular atrial fibrillation during the COVID-19 pandemic. Atrial fibrillation is not only the most common type of supraventricular tachyarrhythmia, but it is also the main underlying cause of more than half of cardioembolic stroke cases, which requires effective thromboprophylaxis. While maintaining the infectious danger for patients, the anticoagulant selection should take into account the possible dysfunctions and drug interactions during the initial infection or reinfection of COVID-19, as well as the possibility of rapid anticoagulant action reverse if surgery is required or bleeding develops. The optimal choice seems to be the use of dabigatran, which is characterized by the best safety profile for hepato- and nephrotoxicity, cytochrome P450-independent metabolism, and the presence of an antidote

    ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ Ρ€Π°Π·Ρ€Π΅ΡˆΠ°ΡŽΡ‰Π΅ΠΉ способности ΠΏΠΎ Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ€Π°Π΄ΠΈΠΎΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹Ρ… Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΎΠ² систСм Π±Π»ΠΈΠΆΠ½Π΅ΠΉ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΈ

    Get PDF
    The description of a new method for increasing the resolution of radio pulse sensors (RPS) designed for short- range radar systems (SRRS) for detecting and measuring motion parameters of location objects is presented. The essence of the method is that the controlled area of space with the targets located in it is periodically irradiated with probing radio pulses, and during their radiation, radio pulses reflected from the targets are simultaneously received and divided into two quadrature channels. Next, they are mixed with probing radio pulses, and the time-overlapping parts of these radio pulses are converted into the region of low Doppler frequencies in the form of two quadrature video pulses. Then, the quadrature video pulses received in these channels are sampled by amplitude, stored at multiple points in time and digitally processed according to the proposed algorithm. The method is implemented in the RPS made on the basis of a horn-lens antenna, a Doppler receiving and transmitting module with quadrature outputs of converted signals, a synchronization and pulse generation unit, as well as a digital signal processing unit. The RPS can be used in onboard (for example, automotive) SRRS designed to detect moving targets, measure the distance to them, as well as determine the speed and direction of movement. The results of experimental studies have been obtained on the example of the 8-mm autodyne RPS made on the basis of the oscillator on a planar Gann-diode.Β Bogatyrev E. V., Vishnyakov D. S., Ignatkov K. A., Noskov V. Ya. Method of increasing the range resolution of radio pulse sensors of short-r ange radar systems. Ural Radio Engineering Journal. 2023;7(2):166–190. (In Russ.) DOI: 10.15826/urej.2023.7.2.005.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ описаниС Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ Ρ€Π°Π·Ρ€Π΅ΡˆΠ°ΡŽΡ‰Π΅ΠΉ способности Ρ€Π°Π΄ΠΈΠΎΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹Ρ… Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΎΠ² (Π Π›Π”), ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Ρ… для систСм Π±Π»ΠΈΠΆΠ½Π΅ΠΉ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΈ (Π‘Π‘Π Π›) обнаруТСния ΠΈ измСрСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² двиТСния ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² Π»ΠΎΠΊΠ°Ρ†ΠΈΠΈ. Π‘ΡƒΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΡƒΡŽ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ пространства с находящимися Π² Π½Π΅ΠΉ цСлями пСриодичСски ΠΎΠ±Π»ΡƒΡ‡Π°ΡŽΡ‚ Π·ΠΎΠ½Π΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ Ρ€Π°Π΄ΠΈΠΎΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°ΠΌΠΈ, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Π²ΠΎ врСмя ΠΈΡ… излучСния ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Π΅ ΠΎΡ‚ Ρ†Π΅Π»Π΅ΠΉ Ρ€Π°Π΄ΠΈΠΎΠΈΠΌΠΏΡƒΠ»ΡŒΡΡ‹ ΠΈ Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‚ ΠΈΡ… Π½Π° Π΄Π²Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»Π°. Π”Π°Π»Π΅Π΅ ΡΠΌΠ΅ΡˆΠΈΠ²Π°ΡŽΡ‚ ΠΈΡ… с Π·ΠΎΠ½Π΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ Ρ€Π°Π΄ΠΈΠΎΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°ΠΌΠΈ, ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ ΠΏΠ΅Ρ€Π΅ΠΊΡ€Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ части этих Ρ€Π°Π΄ΠΈΠΎΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² Π² ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π½ΠΈΠ·ΠΊΠΈΡ… доплСровских частот Π² Π²ΠΈΠ΄Π΅ Π΄Π²ΡƒΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… Π²ΠΈΠ΄Π΅ΠΎΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ². Π—Π°Ρ‚Π΅ΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π² этих ΠΊΠ°Π½Π°Π»Π°Ρ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Π΅ Π²ΠΈΠ΄Π΅ΠΎΠΈΠΌΠΏΡƒΠ»ΡŒΡΡ‹ Π΄ΠΈΡΠΊΡ€Π΅Ρ‚ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ ΠΏΠΎ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π΅, Π·Π°ΠΏΠΎΠΌΠΈΠ½Π°ΡŽΡ‚ Π²ΠΎ мноТСствС ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠ² Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°ΡŽΡ‚ Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΏΠΎ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΌΡƒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ. ΠœΠ΅Ρ‚ΠΎΠ΄ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ Π² Π Π›Π”, Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠΌ Π½Π° Π±Π°Π·Π΅ Ρ€ΡƒΠΏΠΎΡ€Π½ΠΎ-Π»ΠΈΠ½Π·ΠΎΠ²ΠΎΠΉ Π°Π½Ρ‚Π΅Π½Π½Ρ‹, доплСровского ΠΏΡ€ΠΈΠ΅ΠΌΠΎΠΏΠ΅Ρ€Π΅Π΄Π°ΡŽΡ‰Π΅Π³ΠΎ модуля с ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΌΠΈ Π²Ρ‹Ρ…ΠΎΠ΄Π°ΠΌΠΈ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… сигналов, Π±Π»ΠΎΠΊΠ° синхронизации ΠΈ формирования ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ Π±Π»ΠΎΠΊΠ° Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ сигналов. Π Π›Π” ΠΌΠΎΠΆΠ΅Ρ‚ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² Π±ΠΎΡ€Ρ‚ΠΎΠ²Ρ‹Ρ… Π‘Π‘Π Π› (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Ρ…), ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Ρ… для обнаруТСния двиТущихся Ρ†Π΅Π»Π΅ΠΉ, измСрСния расстояния Π΄ΠΎ Π½ΠΈΡ…, Π° Ρ‚Π°ΠΊΠΆΠ΅ опрСдСлСния скорости ΠΈ направлСния двиТСния. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π°Π²Ρ‚ΠΎΠ΄ΠΈΠ½Π½ΠΎΠ³ΠΎ Π Π›Π” 8-ΠΌΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°, Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π° основС Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π° Π½Π° ΠΏΠ»Π°Π½Π°Ρ€Π½ΠΎΠΌ Π΄ΠΈΠΎΠ΄Π΅ Π“Π°Π½Π½Π°.Β Π‘ΠΎΠ³Π°Ρ‚Ρ‹Ρ€Π΅Π² Π•. Π’., Π’ΠΈΡˆΠ½ΡΠΊΠΎΠ² Π”. Π‘., Π˜Π³Π½Π°Ρ‚ΠΊΠΎΠ² К. А., Носков Π’. Π―. ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ Ρ€Π°Π·Ρ€Π΅ΡˆΠ°ΡŽΡ‰Π΅ΠΉ способности ΠΏΠΎ Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ€Π°Π΄ΠΈΠΎΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹Ρ… Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΎΠ² систСм Π±Π»ΠΈΠΆΠ½Π΅ΠΉ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΈ. Ural Radio Engineering Journal. 2023;7(2):166–190. DOI: 10.15826/urej.2023.7.2.005

    ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ сигналов ΠΎΡ‚ распрСдСлСнных Ρ†Π΅Π»Π΅ΠΉ Π°Π²Ρ‚ΠΎΠ΄ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ‚ΠΎΡ€Π° с Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ частотной модуляциСй

    Get PDF
    Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° матСматичСская модСль для описания сигналов Π°Π²Ρ‚ΠΎΠ΄ΠΈΠ½Π½ΠΎΠΉ систСмы Π±Π»ΠΈΠΆΠ½Π΅ΠΉ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΈ (Π‘Π‘Π Π›) с ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠΉ модуляциСй (ИМ) Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹ ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ частотной модуляциСй (Π›Π§Πœ). Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ особСнности формирования сигналов, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΡ‚ распрСдСлСнной Ρ†Π΅Π»ΠΈ Π² Π²ΠΈΠ΄Π΅ ансамбля ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ числа Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π°ΠΆΠ°Ρ‚Π΅Π»Π΅ΠΉ. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ расчСты сигналов ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ шагов для случая Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π°ΠΆΠ°Ρ‚Π΅Π»Π΅ΠΉ Π½Π° ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π΅ Π»ΠΎΠΊΠ°Ρ†ΠΈΠΈ, располоТСнных Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… расстояниях ΠΎΡ‚ Π‘Π‘Π Π›. УстановлСны ΠΎΡ‚Π»ΠΈΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ свойства сигналов, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠ΅ΠΌΠ΅ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠΉ, ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… ΠΎΡ‚ Ρ†Π΅Π»ΠΈ. ПослС посылки Π·ΠΎΠ½Π΄ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ излучСния ΠΏΡ€ΠΈΠ΅ΠΌ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ излучСния ΠΎΡ‚ совокупности блСстящих Ρ‚ΠΎΡ‡Π΅ΠΊ сопровоТдаСтся Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ супСрпозиции сигналов ΠΎΡ‚ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‚Ρ€Π°ΠΆΠ°Ρ‚Π΅Π»Π΅ΠΉ. ΠŸΡ€ΠΈΠ΅ΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ появлСниС ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ взаимодСйствия сигналов ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‚Ρ€Π°ΠΆΠ°Ρ‚Π΅Π»Π΅ΠΉ. Π₯Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Ρ‚Π°ΠΊΠΎΠ³ΠΎ взаимодСйствия опрСдСляСтся Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ связи Π°Π²Ρ‚ΠΎΠ΄ΠΈΠ½Π½ΠΎΠΉ Π‘Π‘Π Π›, зависящСго ΠΎΡ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ Π΄Π΅Π²ΠΈΠ°Ρ†ΠΈΠΈ частоты ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ запаздывания ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ излучСния. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований Π°Π²Ρ‚ΠΎΠ΄ΠΈΠ½Π½ΠΎΠΉ Π‘Π‘Π Π› c ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ИМ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹ ΠΈ Π›Π§Πœ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΏΡ€ΠΈ использовании Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ модуля, Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π° Π΄ΠΈΠΎΠ΄Π΅ Π“Π°Π½Π½Π° 8-ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°. Носков Π’. Π―., Π‘ΠΎΠ³Π°Ρ‚Ρ‹Ρ€Π΅Π² Π•. Π’., Π“Π°Π»Π΅Π΅Π² Π . Π“., Π’ΠΈΡˆΠ½ΡΠΊΠΎΠ² Π”. Π‘. ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ сигналов ΠΎΡ‚ распрСдСлСнных Ρ†Π΅Π»Π΅ΠΉ Π°Π²Ρ‚ΠΎΠ΄ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ‚ΠΎΡ€Π° с Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ частотной модуляциСй. Ural Radio Engineering Journal. 2022;6(4):351–377. DOI: 10.15826/urej.2022.6.4.001.
    • …
    corecore