96 research outputs found
Dynamics of autodyne response formation in microwave generators
The paper presents results of studying the dynamics of autodyne response formation when switching on a radio-pulse microwave generator which is subject to the influence of its own reflection radiation. Basic relations for a step-wise calculation of autodyne response as a function of time delay, autodyne response time constant, distortion parameter and intrinsic parameters of the self-oscillating system are obtained. Calculation and analysis of peculiarities of autodyne signal generation by radio-pulse oscillator are conducted for the cases of motionless and moving reflecting object under relatively low, medium and high inertia properties of the oscillator if compared to the propagation time of the reflected radiation. Experimental research results that confirm conclusions of theoretical analysis are obtained for a common hybrid-integrated autodyne TIGEL-08 module of the 8-mm frequency-range implemented on a planar two-meza Gunn diodes and the same module stabilized by the external high-Q resonator. Β© 2013 Allerton Press, Inc
Analysis of signals of stabilized autodynes
Results of the autodyne signal analysis of the self-oscillating systems stabilized in frequency by the external high-quality cavity are given. The coupling between the main and stabilizing cavities is realized on the basis of a pass-reflective filter with a resistive link. Mathematical equations are obtained describing an autodyne response onto impact of the own radiated signal reflected from a target. The analysis of phase, amplitude, frequency and amplitude-frequency characteristics of the autodyne system is fulfilled. The calculation of an autodyne signal spectrum is discussed. A new type of nonlinear distortions of an autodyne signal is examined, which is caused by a frequency dispersion of an oscillating system of the stabilized autodyne. Advantages of the stabilized autodyne compared to the usual single-tuned autodyne oscillator are shown
Determination of autodyne oscillator parameters by the beating method
The research results of oscillator internal parameters influence the features of dynamic autodyne characteristics formation in the case of external oscillator signal influence are presented. The equivalent circuit with a single-circuit oscillating system is considered as a model of the autodyne oscillator. Abbreviated equations are obtained by an averaging method and then they are linearized for small disturbances in a vicinity of the steady-state mode. The obtained characteristics for the beating mode are compared with characteristics of autodynes for short-range radar technology. The essential differences in behavior of the oscillator with acting the external oscillator and the oscillator with acting the own reflected signal have been found. The physical sense of the frequency dispersion phenomenon for the autodyne frequency deviation in the vicinity of hypothetical βzeroβ beating is discovered. The research results of dynamic autodyne characteristics in the frequency conversion mode of signals modulated on amplitude or frequency are given. It is shown that to suppress the spurious harmonics of the beating frequency, it is advisable to take additional measures for generated frequency stabilization in autodyne frequency converters, for instance, using the external feedback in the oscillator or using the external high-Q resonator. The adequacy of theoretical conclusions is confirmed by results of experimental investigations of the hybrid-integrated module of 8 mm-range made on the basis of the planar two-meza Gunn diode. Oscillator characteristics obtained by the beating method are compared with results of investigation fulfilled with the help of modulation characteristics. It is shown that errors in experimental determination of dynamic characteristics of autodyne oscillators caused by frequency limitations of a pin-diode typical for the modulation characteristic method can be eliminated. Problems of practical application of obtained results in real radar systems using autodyne oscillators are discussed
Modulation characteristics of microwave autodyne oscillators
General relations for the analysis of autodyne and modulation characteristics are obtained in the form of differential equations with the retarded argument. Solutions for characteristics of frequency response of autodyne variations of the oscillation amplitude and phase as well as the auto-detecting signal of UHF oscillator under influence of the proper reflected radiation are derived. The solution of the same equation system is given for frequency responses of the modulation deepness of oscillation amplitude and frequency as well as the auto-detecting signal in the case of the reflection factor modulation by the high-frequency signal. Calculations of autodyne and modulation characteristics are fulfilled at different values of inherent parameters of UHF oscillators. Non-isochronous and non-isodromous properties of autodyne oscillators are investigated. Phenomena of frequency auto-detecting are considered. A method for dynamic properties determination is substantiated according to its modulation characteristics at the oscillation amplitude registration. The results of theoretical analysis are confirmed by experimental data obtained on the example of hybrid-integrated oscillator of 8mm-range on the Gunn diode
Theory of stabilized autodyne oscillators at the large reflected signal
Research results on autodyne oscillator stabilized by an external high-Q cavity are presented for the case of the large reflected signal, when amplitude of the reflected wave is commensurable with amplitude of natural oscillations. Expressions describing an autodyne response of the oscillator on the influence of the proper radiation reflected from a target are obtained. Calculations of amplitude, frequency and spectral characteristics of the autodyne system are performed. Conditions of exact tuning of the stabilized cavity are determined. Investigations of stabilized autodyne parameters at small distance to the reflected object are provided. It is shown that to expand the dynamic range of the autodyne system it is expedient to use the large coupling between cavities. Recommendations concerning practical application of the obtained results in the short-range radar are given
ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ΅ΡΠΆΠ½Ρ Π²Π½ΡΡΡΠΈ ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π»ΠΈΠ½Π·Ρ ΠΡΠ½Π΅Π±Π΅ΡΠ³Π° Π½Π° Π΅Π΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ
The paper discusses the option of installing a load-bearing element inside a spherical Luneberg lens (LL). The presence of a metal element inside the LL will increase the structural rigidity of the spherical antenna and thereby expand the scope of use of the LL at various mobile communications and radar facilities with severe operating conditions. The influence of a metal rod inside the main spherical structure on the radiation pattern in two main planes in the linear polarization mode and on the diffraction pattern of the radiation field is estimated. The results of the analysis of the directional characteristics and the diffraction pattern of the LL radiation field were obtained using modeling in the Ansys Electronics Desktop (HFSS Design) working environment, as well as mathematical modeling using the Green tensor function method. At the same time, the obtained mathematical relations can be used in the future to solve the problem of finding the optimal size and position of a metal element in the sphere of LL.Β Denisov D. V., Noskov V. Ya. The influence of a metal rod inside a spherical Luneberg lens on its characteristics. Ural Radio Engineering Journal. 2022;6(2):160β185. (In Russ.) DOI: 10.15826/urej.2022.6.2.003.Β Π ΡΠ°Π±ΠΎΡΠ΅ ΠΎΠ±ΡΡΠΆΠ΄Π°Π΅ΡΡΡ Π²Π°ΡΠΈΠ°Π½Ρ ΠΈΠ½ΡΡΠ°Π»Π»ΡΡΠΈΠΈ Π½Π΅ΡΡΡΠ΅Π³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° Π²Π½ΡΡΡΡ ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π»ΠΈΠ½Π·Ρ ΠΡΠ½Π΅Π±Π΅ΡΠ³Π° (ΠΠ). ΠΠ°Π»ΠΈΡΠΈΠ΅ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° Π²Π½ΡΡΡΠΈ ΠΠ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠ²Π½ΡΡ ΠΆΠ΅ΡΡΠΊΠΎΡΡΡ ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°Π½ΡΠ΅Π½Π½Ρ ΠΈ ΡΠ΅ΠΌ ΡΠ°ΠΌΡΠΌ ΡΠ°ΡΡΠΈΡΠΈΡΡ ΠΎΠ±Π»Π°ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΠ Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠ°Ρ
ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ ΠΈ ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΈ Ρ ΡΡΠΆΠ΅Π»ΡΠΌΠΈ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌΠΈ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΈ. ΠΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΎΡΠ΅Π½ΠΊΠ° Π²Π»ΠΈΡΠ½ΠΈΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ΅ΡΠΆΠ½Ρ Π²Π½ΡΡΡΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ Π½Π° Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΡΡΠΈ Π² Π΄Π²ΡΡ
ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡΡ
Π² ΡΠ΅ΠΆΠΈΠΌΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΏΠΎΠ»ΡΡΠΈΠ·Π°ΡΠΈΠΈ ΠΈ Π½Π° ΠΊΠ°ΡΡΠΈΠ½Ρ Π΄ΠΈΡΡΠ°ΠΊΡΠΈΠΈ ΠΏΠΎΠ»Ρ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ Π°Π½Π°Π»ΠΈΠ·Π° Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΡΡΠΈ ΠΈ Π΄ΠΈΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠ°ΡΡΠΈΠ½Ρ ΠΏΠΎΠ»Ρ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΠΠ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π² ΡΠ°Π±ΠΎΡΠ΅ΠΉ ΡΡΠ΅Π΄Π΅ Ansys Electronics Desktop (HFSS Design), Π° ΡΠ°ΠΊΠΆΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΠ΅Π½Π·ΠΎΡΠ½ΡΡ
ΡΡΠ½ΠΊΡΠΈΠΉ ΠΡΠΈΠ½Π°. ΠΡΠΈ ΡΡΠΎΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π² Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°ΡΠΈ ΠΏΠΎΠΈΡΠΊΠ° ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° Π² ΡΡΠ΅ΡΠ΅ ΠΠ
Moving Object Signal Analysis of Autodyne Radars with Linear Types of Frequency
ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² Π°Π²ΡΠΎΠ΄ΠΈΠ½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π±Π»ΠΈΠΆΠ½Π΅ΠΉ ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΈ Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠ°ΡΡΠΎΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠ΅ΠΉ Π΄Π»Ρ Π΄Π²ΠΈΠΆΡΡΠ΅Π³ΠΎΡΡ ΠΎΡΡΠ°ΠΆΠ°ΡΡΠ΅Π³ΠΎ ΠΎΠ±ΡΠ΅ΠΊΡΠ°. ΠΠΎΠ»ΡΡΠ΅Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π°Π²ΡΠΎΠ΄ΠΈΠ½Π½ΡΡ
ΡΠΈΠ³Π½Π°Π»ΠΎΠ² Π΄Π»Ρ ΡΠ»ΡΡΠ°Π΅Π², ΠΊΠΎΠ³Π΄Π° ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΈΡ
ΠΏΠ΅ΡΠΈΠΎΠ΄Π° Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π·Π°ΠΏΠ°Π·Π΄ΡΠ²Π°Π½ΠΈΡ ΠΎΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ, Π° ΡΠ°ΠΊΠΆΠ΅ Π΄Π»Ρ ΡΠ»ΡΡΠ°Π΅Π², ΠΊΠΎΠ³Π΄Π° Π΄Π°Π½Π½ΠΎΠ΅ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ Π½Π΅ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ. Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² Π΄Π»Ρ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ°ΡΡΠ΅Π³ΠΎΡΡ ΠΈ ΡΠ΄Π°Π»ΡΡΡΠ΅Π³ΠΎΡΡ ΠΎΠ±ΡΠ΅ΠΊΡΠ°. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Π½Π° Π³Π΅Π½Π΅ΡΠ°ΡΠΎΡΠ΅, Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠΌ Π½Π° Π΄ΠΈΠΎΠ΄Π΅ ΠΠ°Π½Π½Π° 8βΠΌΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° Ρ ΠΏΠ΅ΡΠ΅ΡΡΡΠΎΠΉΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ Π²Π°ΡΠΈΠΊΠ°ΠΏΠ°.General equations for analysis of the signal formation peculiarities are obtained for the autodyne short-range radar (ASRR) systems both for the case of the fixed and moving reflecting object, using arbitrary types of frequency modulation (FM). The developed mathematical model anticipates the interaction analysis of ASRR with the reflected emission at arbitrary ratio of the delay time Ο of the reflected emission and the autodyne signal period Ta. Signal features for the oncoming and outcoming object are considered. The experimental data are obtained on the oscillator made on the 8mm-Gunn diode with the varicap frequency tuning. The fulfilled calculations and experimental investigations of ASRR signals for linear types of FM show that the autodyne frequency both for the moving and fixed reflector exactly corresponds to the frequency of transformed signal obtained in the case of the homodyne system. However, the presence of autodyne signal distortions requires the account in the signal processing devices under conditions, when the distance to the reflecting object is small, and the feedback parameter Cfb is commensurable to 1. The obtained results of autodyne characteristic research in the case when the autodyne signal period is commensurable or even less than delay time show that the distortion of autodyne signal at hypothetical keeping of the reflected amplitude decreases with distance growth. The calculations show that if the feedback parameter exceeds some boundary value even in several times, in higher operation zones of ASRR with FM operation can be provided with formation of quasi-harmonic signals. The obtained analysis results are developed and supplemented of results of known investigations, which were published in previous papers. Revealed regulations of signal formation in ASRR with FM have enough general characteristics and physical interpretation on the base of the step method known in systems with delay. In this connection, the obtained results in this paper can be used in the calculations of autodyne system signals made on semiconductor laser modules with FM
Optimal choice of prophylactic anticoagulant therapy for nonvalvular atrial fibrillation in the context of COVID-19 pandemic
Already at the very beginning of COVID-19 pandemic, it became known about the key clinical and pathogenetic significance of immunopathological reactions and disorders of hemostasis. Specific coagulopathy, microvascular thromboinflammatory organ damage, macrothrombosis and thromboembolism in the acute period of COVID-19, as well as secondary hemostasis disorders in convalescents, actualize the issues of caring patients with cardiovascular disease. COVID-19 not only increases the risk of thromboembolic events for patients with previously identified arrhythmias, but can also indirectly cause it (as a complication of infection or therapy). The aim of this work was to summarize the data and substantiate the optimal choice of prophylactic anticoagulant therapy for nonvalvular atrial fibrillation during the COVID-19 pandemic. Atrial fibrillation is not only the most common type of supraventricular tachyarrhythmia, but it is also the main underlying cause of more than half of cardioembolic stroke cases, which requires effective thromboprophylaxis. While maintaining the infectious danger for patients, the anticoagulant selection should take into account the possible dysfunctions and drug interactions during the initial infection or reinfection of COVID-19, as well as the possibility of rapid anticoagulant action reverse if surgery is required or bleeding develops. The optimal choice seems to be the use of dabigatran, which is characterized by the best safety profile for hepato- and nephrotoxicity, cytochrome P450-independent metabolism, and the presence of an antidote
ΠΠ΅ΡΠΎΠ΄ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠ°Π·ΡΠ΅ΡΠ°ΡΡΠ΅ΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΏΠΎ Π΄Π°Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ°Π΄ΠΈΠΎΠΈΠΌΠΏΡΠ»ΡΡΠ½ΡΡ Π΄Π°ΡΡΠΈΠΊΠΎΠ² ΡΠΈΡΡΠ΅ΠΌ Π±Π»ΠΈΠΆΠ½Π΅ΠΉ ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΈ
The description of a new method for increasing the resolution of radio pulse sensors (RPS) designed for short- range radar systems (SRRS) for detecting and measuring motion parameters of location objects is presented. The essence of the method is that the controlled area of space with the targets located in it is periodically irradiated with probing radio pulses, and during their radiation, radio pulses reflected from the targets are simultaneously received and divided into two quadrature channels. Next, they are mixed with probing radio pulses, and the time-overlapping parts of these radio pulses are converted into the region of low Doppler frequencies in the form of two quadrature video pulses. Then, the quadrature video pulses received in these channels are sampled by amplitude, stored at multiple points in time and digitally processed according to the proposed algorithm. The method is implemented in the RPS made on the basis of a horn-lens antenna, a Doppler receiving and transmitting module with quadrature outputs of converted signals, a synchronization and pulse generation unit, as well as a digital signal processing unit. The RPS can be used in onboard (for example, automotive) SRRS designed to detect moving targets, measure the distance to them, as well as determine the speed and direction of movement. The results of experimental studies have been obtained on the example of the 8-mm autodyne RPS made on the basis of the oscillator on a planar Gann-diode.Β Bogatyrev E. V., Vishnyakov D. S., Ignatkov K. A., Noskov V. Ya. Method of increasing the range resolution of radio pulse sensors of short-r ange radar systems. Ural Radio Engineering Journal. 2023;7(2):166β190. (In Russ.) DOI: 10.15826/urej.2023.7.2.005.ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠ°Π·ΡΠ΅ΡΠ°ΡΡΠ΅ΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΡΠ°Π΄ΠΈΠΎΠΈΠΌΠΏΡΠ»ΡΡΠ½ΡΡ
Π΄Π°ΡΡΠΈΠΊΠΎΠ² (Π ΠΠ), ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½Π½ΡΡ
Π΄Π»Ρ ΡΠΈΡΡΠ΅ΠΌ Π±Π»ΠΈΠΆΠ½Π΅ΠΉ ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΈ (Π‘ΠΠ Π) ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π»ΠΎΠΊΠ°ΡΠΈΠΈ. Π‘ΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅ΠΌΡΡ ΠΎΠ±Π»Π°ΡΡΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° Ρ Π½Π°Ρ
ΠΎΠ΄ΡΡΠΈΠΌΠΈΡΡ Π² Π½Π΅ΠΉ ΡΠ΅Π»ΡΠΌΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈ ΠΎΠ±Π»ΡΡΠ°ΡΡ Π·ΠΎΠ½Π΄ΠΈΡΡΡΡΠΈΠΌΠΈ ΡΠ°Π΄ΠΈΠΎΠΈΠΌΠΏΡΠ»ΡΡΠ°ΠΌΠΈ, ΠΏΡΠΈΡΠ΅ΠΌ Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΠΈΡ
ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΠΎΡΡΠ°ΠΆΠ΅Π½Π½ΡΠ΅ ΠΎΡ ΡΠ΅Π»Π΅ΠΉ ΡΠ°Π΄ΠΈΠΎΠΈΠΌΠΏΡΠ»ΡΡΡ ΠΈ ΡΠ°Π·Π΄Π΅Π»ΡΡΡ ΠΈΡ
Π½Π° Π΄Π²Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΡΡΠ½ΡΡ
ΠΊΠ°Π½Π°Π»Π°. ΠΠ°Π»Π΅Π΅ ΡΠΌΠ΅ΡΠΈΠ²Π°ΡΡ ΠΈΡ
Ρ Π·ΠΎΠ½Π΄ΠΈΡΡΡΡΠΈΠΌΠΈ ΡΠ°Π΄ΠΈΠΎΠΈΠΌΠΏΡΠ»ΡΡΠ°ΠΌΠΈ, ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΊΡΡΠ²Π°ΡΡΠΈΠ΅ΡΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°ΡΡΠΈ ΡΡΠΈΡ
ΡΠ°Π΄ΠΈΠΎΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² Π² ΠΎΠ±Π»Π°ΡΡΡ Π½ΠΈΠ·ΠΊΠΈΡ
Π΄ΠΎΠΏΠ»Π΅ΡΠΎΠ²ΡΠΊΠΈΡ
ΡΠ°ΡΡΠΎΡ Π² Π²ΠΈΠ΄Π΅ Π΄Π²ΡΡ
ΠΊΠ²Π°Π΄ΡΠ°ΡΡΡΠ½ΡΡ
Π²ΠΈΠ΄Π΅ΠΎΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ². ΠΠ°ΡΠ΅ΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π² ΡΡΠΈΡ
ΠΊΠ°Π½Π°Π»Π°Ρ
ΠΊΠ²Π°Π΄ΡΠ°ΡΡΡΠ½ΡΠ΅ Π²ΠΈΠ΄Π΅ΠΎΠΈΠΌΠΏΡΠ»ΡΡΡ Π΄ΠΈΡΠΊΡΠ΅ΡΠΈΠ·ΠΈΡΡΡΡ ΠΏΠΎ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π΅, Π·Π°ΠΏΠΎΠΌΠΈΠ½Π°ΡΡ Π²ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π°ΡΡ ΡΠΈΡΡΠΎΠ²ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΏΠΎ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΌΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΡ. ΠΠ΅ΡΠΎΠ΄ ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ Π² Π ΠΠ, Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠΌ Π½Π° Π±Π°Π·Π΅ ΡΡΠΏΠΎΡΠ½ΠΎ-Π»ΠΈΠ½Π·ΠΎΠ²ΠΎΠΉ Π°Π½ΡΠ΅Π½Π½Ρ, Π΄ΠΎΠΏΠ»Π΅ΡΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΈΠ΅ΠΌΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΡΠ΅Π³ΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΡΡΠ½ΡΠΌΠΈ Π²ΡΡ
ΠΎΠ΄Π°ΠΌΠΈ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΡΡ
ΡΠΈΠ³Π½Π°Π»ΠΎΠ², Π±Π»ΠΎΠΊΠ° ΡΠΈΠ½Ρ
ΡΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΠΈ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ Π±Π»ΠΎΠΊΠ° ΡΠΈΡΡΠΎΠ²ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠΈΠ³Π½Π°Π»ΠΎΠ². Π ΠΠ ΠΌΠΎΠΆΠ΅Ρ Π½Π°ΠΉΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² Π±ΠΎΡΡΠΎΠ²ΡΡ
Π‘ΠΠ Π (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»ΡΠ½ΡΡ
), ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½Π½ΡΡ
Π΄Π»Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΡΡΠΈΡ
ΡΡ ΡΠ΅Π»Π΅ΠΉ, ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΡ Π΄ΠΎ Π½ΠΈΡ
, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ Π°Π²ΡΠΎΠ΄ΠΈΠ½Π½ΠΎΠ³ΠΎ Π ΠΠ 8-ΠΌΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°, Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π³Π΅Π½Π΅ΡΠ°ΡΠΎΡΠ° Π½Π° ΠΏΠ»Π°Π½Π°ΡΠ½ΠΎΠΌ Π΄ΠΈΠΎΠ΄Π΅ ΠΠ°Π½Π½Π°.Β ΠΠΎΠ³Π°ΡΡΡΠ΅Π² Π. Π., ΠΠΈΡΠ½ΡΠΊΠΎΠ² Π. Π‘., ΠΠ³Π½Π°ΡΠΊΠΎΠ² Π. Π., ΠΠΎΡΠΊΠΎΠ² Π. Π―. ΠΠ΅ΡΠΎΠ΄ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠ°Π·ΡΠ΅ΡΠ°ΡΡΠ΅ΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΏΠΎ Π΄Π°Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ°Π΄ΠΈΠΎΠΈΠΌΠΏΡΠ»ΡΡΠ½ΡΡ
Π΄Π°ΡΡΠΈΠΊΠΎΠ² ΡΠΈΡΡΠ΅ΠΌ Π±Π»ΠΈΠΆΠ½Π΅ΠΉ ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΈ. Ural Radio Engineering Journal. 2023;7(2):166β190. DOI: 10.15826/urej.2023.7.2.005
ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² ΠΎΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ ΡΠ΅Π»Π΅ΠΉ Π°Π²ΡΠΎΠ΄ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΎΡΠ° Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠ°ΡΡΠΎΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠ΅ΠΉ
Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Π΄Π»Ρ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² Π°Π²ΡΠΎΠ΄ΠΈΠ½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π±Π»ΠΈΠΆΠ½Π΅ΠΉ ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΈΠΈ (Π‘ΠΠ Π) Ρ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠ΅ΠΉ (ΠΠ) Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠ°ΡΡΠΎΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠ΅ΠΉ (ΠΠ§Π). Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ², ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΎΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΡΠ΅Π»ΠΈ Π² Π²ΠΈΠ΄Π΅ Π°Π½ΡΠ°ΠΌΠ±Π»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΡΠΎΡΠ΅ΡΠ½ΡΡ
ΠΎΡΡΠ°ΠΆΠ°ΡΠ΅Π»Π΅ΠΉ. ΠΡΠΏΠΎΠ»Π½Π΅Π½Ρ ΡΠ°ΡΡΠ΅ΡΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠ°Π³ΠΎΠ² Π΄Π»Ρ ΡΠ»ΡΡΠ°Ρ Π΄Π²ΡΡ
ΡΠΎΡΠ΅ΡΠ½ΡΡ
ΠΎΡΡΠ°ΠΆΠ°ΡΠ΅Π»Π΅ΠΉ Π½Π° ΠΎΠ±ΡΠ΅ΠΊΡΠ΅ Π»ΠΎΠΊΠ°ΡΠΈΠΈ, ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡΡ
Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΡΡ
ΠΎΡ Π‘ΠΠ Π. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ ΠΎΡΠ»ΠΈΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΈΠ³Π½Π°Π»ΠΎΠ², ΡΠΎΡΠΌΠΈΡΡΠ΅ΠΌΡΡ
ΠΏΡΠΈ ΠΏΡΠΈΠ΅ΠΌΠ΅ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΡ
ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΠΉ, ΠΎΡΡΠ°ΠΆΠ΅Π½Π½ΡΡ
ΠΎΡ ΡΠ΅Π»ΠΈ. ΠΠΎΡΠ»Π΅ ΠΏΠΎΡΡΠ»ΠΊΠΈ Π·ΠΎΠ½Π΄ΠΈΡΡΡΡΠ΅Π³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΈΠ΅ΠΌ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΎΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΠΎΡ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ Π±Π»Π΅ΡΡΡΡΠΈΡ
ΡΠΎΡΠ΅ΠΊ ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π΅ΡΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠΏΠ΅ΡΠΏΠΎΠ·ΠΈΡΠΈΠΈ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² ΠΎΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΠΎΡΡΠ°ΠΆΠ°ΡΠ΅Π»Π΅ΠΉ. ΠΡΠΈΠ΅ΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΡ
ΠΎΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π²ΡΠ·ΡΠ²Π°Π΅Ρ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΠΎΡΡΠ°ΠΆΠ°ΡΠ΅Π»Π΅ΠΉ. Π₯Π°ΡΠ°ΠΊΡΠ΅Ρ ΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΡΠ°ΠΊΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ° ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ Π°Π²ΡΠΎΠ΄ΠΈΠ½Π½ΠΎΠΉ Π‘ΠΠ Π, Π·Π°Π²ΠΈΡΡΡΠ΅Π³ΠΎ ΠΎΡ Π²Π΅Π»ΠΈΡΠΈΠ½ Π΄Π΅Π²ΠΈΠ°ΡΠΈΠΈ ΡΠ°ΡΡΠΎΡΡ ΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π·Π°ΠΏΠ°Π·Π΄ΡΠ²Π°Π½ΠΈΡ ΠΎΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π°Π²ΡΠΎΠ΄ΠΈΠ½Π½ΠΎΠΉ Π‘ΠΠ Π c ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΠ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈ ΠΠ§Π ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ Π³Π΅Π½Π΅ΡΠ°ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ, Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π° Π΄ΠΈΠΎΠ΄Π΅ ΠΠ°Π½Π½Π° 8-ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅ΡΡΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°.Β ΠΠΎΡΠΊΠΎΠ² Π. Π―., ΠΠΎΠ³Π°ΡΡΡΠ΅Π² Π. Π., ΠΠ°Π»Π΅Π΅Π² Π . Π., ΠΠΈΡΠ½ΡΠΊΠΎΠ² Π. Π‘. ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΠΈΠ³Π½Π°Π»ΠΎΠ² ΠΎΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ
ΡΠ΅Π»Π΅ΠΉ Π°Π²ΡΠΎΠ΄ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°ΡΠΎΡΠ° Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠ°ΡΡΠΎΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠ΅ΠΉ. Ural Radio Engineering Journal. 2022;6(4):351β377. DOI: 10.15826/urej.2022.6.4.001.
- β¦