737 research outputs found

    Non equilibrium thermodynamics and cosmological pancakes formation

    Full text link
    We investigate the influence of non equilibrium thermodynamics on cosmological structure formation. In this paper, we consider the collapse of planar perturbations usually called "Zel'dovich pancakes". We have developed for that purpose a new two fluids (gas and dark matter) hydrodynamical code, with three different thermodynamical species: electrons, ions and neutral particles (T_e\ne T_i \ne T_n). We describe in details the complex structure of accretion shock waves. We include several relevant processes for a low density, high temperature, collisional plasma such as non-equilibrium chemical reactions, cooling, shock heating, thermal energy equipartition between electrons, ions and neutral particles and electronic conduction. We find two different regions in the pancake structure: a thermal precursor ahead of the compression front and an equipartition wave after the compression front where electrons and ions temperatures differ significantly. This complex structure may have two interesting consequences: pre-heating of unshocked regions in the vicinity of massive X-ray clusters and ions and electrons temperatures differences in the outer regions of X-rays clusters.Comment: 30 pages, including 8 figures, accepted for publication in The Astrophysical Journa

    The Nucleon-Nucleon Interaction in a Chiral Constituent Quark Model

    Get PDF
    We study the short-range nucleon-nucleon interaction in a chiral constituent quark model by diagonalizing a Hamiltonian comprising a linear confinement and a Goldstone boson exchange interaction between quarks. The six-quark harmonic oscillator basis contains up to two excitation quanta. We show that the highly dominant configuration is ∣s4p2[42]O[51]FS>\mid s^4p^2[42]_O [51]_{FS}> due to its specific flavour-spin symmetry. Using the Born-Oppenheimer approximation we find a strong effective repulsion at zero separation between nucleons in both 3S1^3S_1 and 1S0^1S_0 channels. The symmetry structure of the highly dominant configuration implies the existence of a node in the S-wave relative motion wave function at short distances. The amplitude of the oscillation of the wave function at short range will be however strongly suppressed. We discuss the mechanism leading to the effective short-range repulsion within the chiral constituent quark model as compared to that related with the one-gluon exchange interaction.Comment: 31 pages, LaTe

    Transformation of the Poynting flux into the kinetic energy in relativistic jets

    Full text link
    The acceleration of relativistic jets from the Poynting to the matter dominated stage is considered. The are generally two collimation regimes, which we call equilibrium and non-equilibrium, correspondingly. In the first regime, the jet is efficiently accelerated till the equipartition between the kinetic and electro-magnetic energy. We show that after the equilibrium jet ceases to be Poynting dominated, the ratio of the electro-magnetic to the kinetic energy decreases only logarithmically so that such jets become truly matter dominated only at extremely large distances. Non-equilibrium jets remain generally Poynting dominated till the logarithmically large distances. In the only case when a non-equilibrium jet is accelerated till the equipartition level, we found that the flow is not continued to the infinity but is focused towards the axis at a finite distance from the origin.Comment: Submitted to MNRAS Minor changes in the Conclusion

    Aging processes in reversible reaction-diffusion systems

    Full text link
    Reversible reaction-diffusion systems display anomalous dynamics characterized by a power-law relaxation toward stationarity. In this paper we study in the aging regime the nonequilibrium dynamical properties of some model systems with reversible reactions. Starting from the exact Langevin equations describing these models, we derive expressions for two-time correlation and autoresponse functions and obtain a simple aging behavior for these quantities. The autoresponse function is thereby found to depend on the specific nature of the chosen perturbation of the system.Comment: 12 pages, accepted for publication in Phys. Rev.

    Symmetry and magnetically driven ferroelectricity in rare-earth manganites RMnO3 (R=Gd, Tb, Dy)

    Full text link
    This work investigates the magnetically driven ferroelectricity in orthorhombic manganites RMnO3 (R=Gd, Dy or Tb) from the point of view of the symmetry. The method adopted generalizes the one used to characterize the polar properties of displacive modulated structures to the case of an irreducible magnetic order parameter. The symmetry conditions for magnetically induced ferroelectricity are established and the Landau-Devonshire free energy functionals derived from general symmetry considerations. The ferroelectric polarisation observed in DyMnO3 and TbMnO3 at zero magnetic field is explained in terms of the symmetry of a reducible magnetic order parameter. The polarisation rotation induced in these compounds by external magnetic fields and the stabilization of a ferroelectric phase in GdMnO3 are accounted for by a mechanism in which magnetization and polarization are secondary order parameters that are not directly coupled but compete with each other through their coupling to competing primary modulated order parameters.Comment: Article submitted to Physical Review B, 39 page

    Weak-Field Gravity of Revolving Circular Cosmic Strings

    Get PDF
    A weak-field solution of Einstein's equations is constructed. It is generated by a circular cosmic string revolving in its plane about the centre of the circle. (The revolution is introduced to prevent the string from collapsing.) This solution exhibits a conical singularity, and the corresponding deficit angle is the same as for a straight string of the same linear energy density, irrespective of the angular velocity of the string.Comment: 13 pages, LaTe
    • 

    corecore