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Weak-field gravity of revolving circular cosmic strings
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School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland
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Physics Department, University College, Cork, Ireland

and Physics Department, Cork Regional Technical College, Bishopstourn, County Cork, Ireland
{Received 6 October 1992)

A weak-field solution of Einstein's equations is constructed. It is generated by a circular cosmic string

revolving in its plane about the center of the circle. {The revolution is introduced to prevent the string

from collapsing. ) This solution exhibits a conical singularity, and the corresponding deficit angle is the

same as for a straight string of the same linear energy density, irrespective of the angular velocity of the

string.

PACS number{s): 04.20.Jb, 98.80.Cq

I. INTRODUCTION

One of the most notable features of a straight cosmic
string [I] is the presence in spacetime of an angular
deficit, the magnitude of which is related to the linear en-

ergy density p of the string by 6$=gtrGp, . Indeed, the
deficit-angle structure of spacetime is central to many
proposals for the possible observation of the gravitational
effects of cosmic strings [2].

The deficit-angle model is generally accepted as a good
approximation for describing the exterior gravitational
field of cosmic strings. Frolov, Israel, and Unruh (FIU)
used precisely this approximation when they considered a
thin circular string at a moment of time symmetry [3].

Recently, we investigated further [4] the problem of
the deficit angle produced by circular strings. We con-
structed a weak-field stationary solution of Einstein's
equations generated by a thin circular string and estab-
lished that external radial stresses had to be introduced to
support the ring against collapse (thus allowing a station-
ary solution to exist). The form of the radial stresses was
completely determined by stress-energy conservation.
The main result of our study was that a circular string
produces conical singularities with the same angular
deficit as a straight string of identical linear energy densi-

ty, fully supporting FIU's assumption. Thus we demon-
strated, in the weak-field limit, the validity of the FIU hy-
pothesis directly from the field equations. Furthermore,
the external radial stresses were seen not to contribute to
this angular deficit.

In the present work, we ask the question whether it is
possible to extend the previous results to a self-
supporting circular string, as opposed to an externally
supported circular string: Can the stabilizing role previ-
ously played by external radial stresses be played by an

*Present address: Dept. of Mathematics, Statistics, and Com-

puter Science, Dalhousie University, Halifax, Nova Scotia, Can-
ada 83H 4H6.

internal mechanism? Centrifugal force is the simplest
candidate; it should be possible to prevent gravitational
collapse by spinning the ring at an appropriate angular
velocity.

We construct a weak-field solution of Einstein's equa-
tions corresponding to an infinitely thin circular string re-
volving at a given angular velocity ~. We begin by exam-
ining the most general scenario where the string is par-
tially supported by centrifugal force and partially by
external radial stresses. The angular velocity is chosen
arbitrarily, and the radial stresses are then determined by
stress-energy conservation. The angular deficit produced
by this solution is found to be equal to the deficit pro-
duced by a straight string (of the same linear energy den-
sity), irrespective of the value of the angular velocity co

(within the limitation of the weak-field approximation).
Later, we also calculate and discuss the critical angular
velocity cu„;, at which the ring is totally self-supporting,
namely, the particular velocity at which no radial stresses
are necessary to support the ring. The latter is then sup-
ported entirely by centrifugal force.

In this paper, we use units in which fi=c =1, take the
metric to have signature ( —,+, +, + ), and adopt the
geometrical conventions of Synge [5].

II. STRESS-ENERGY TENSOR

The stress-energy tensor T" generating the gravita-
tional field of a revolving string partially supported
against collapse by external radial stresses contains three
contributions: T, the contribution from the circular
motion of the ring (excluding radial stresses required to
maintain circular motion); "T", the contribution from
the azimuthal fiux through the string (which corresponds
to the T; stresses for Vilenkin's straight string); and
T", the contribution from the external radial stresses.

Given that the diameter of the core of a string arising
from a spontaneously broken gauge theory [6] is micro-
scopically small, it is well justified to make the approxi-
mation that the stress-energy tensors T" and T" of
the circular string be confined to the infinitely thin ring
r =a, z =0, where a denotes the radius of the ring. On
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u"=I (6I'+F5~&),
—I =g«(a—,O)+2cog«(a, O)+co g&&(a, O),

(2.1)

(2.2)

where g„(a,O) denotes the metric components evaluated
at r =a, z=0. (The metric enters this equation because
of the normalization condition u "u = —1.)

Furthermore, the ring has its rest-energy density pp
purely localized:

the other hand, the radial stresses T", being external,
are not confined to the core of the string. (See [4] for a
more detailed discussion. )

For (pressure-free) dust of rest-energy density po, mov-
ing with four-velocity u", the stress-energy tensor is

T" =ppu "u, where u "u„=—1. In cylindrical coordi-
nates x"= ( t, P, r, z ), the four-velocity u " of an infinitely
thin ring of radius a, centered at the origin, lying in the
x-y plane, and revolving with angular velocity ~, is readi-
ly found as

P(i) =k() 5(r a )5(z ) (2.9)

where ko is a constant with dimensions of force. (We in-
terpret —ko as the tension in the ring. )

Moreover, the only relevant principal axis A,(, )
must

point spatially along the P direction. The constraint
(2.8), together with (2.7) applied to the velocity (2.1),
determines A,(, ) as

X( I )Ar( j )P 6ij e

The stress-energy tensor T" of (2.4) already takes
into account the motion of the ring; therefore, we only
consider the stress part S"„of (2.5). The physical re-
quirement that there be no pressure along the r and z axes
implies that the principal pressures P(2) and P(3) vanish.
Thus the only nonzero principal pressure is the azimuthal
pressure P(&)

=—P(&). For an infinitely thin ring, the az-
imuthal pressure is confined to the core of the string,
which implies

pa= @05(r—a )5(z ), (2.3) I(&) =E5It"+I. (2.10)

where pp is the linear rest-energy density. Consequently,
the stress-energy tensor T" produced by the circular
motion has the expression

where K and 1.are solutions of the system

Kg«(a, O)+(L +coK )g«(a, O)+ coLg&&(a, O) =0, (2.11)

T" =((toI (5", +F5~~)[g„,(a, O)+cog ~(a, O)]
K g„(a,O)+2KLg«(a, O)+L g&&(a, O)=1 . (2.12)

X5(r —a )5(z), (2.4)

T" =ppu "u —S" (2.5)

in which the tensor S", the stress tensor, satisfies
S" u =0. The eigenvectors X~(;), assumed spacelike, and
the corresponding eigenvalues —P(,.), I ~ i ~ 3, are called,
respectively, the "principal axes" and the "principal
stresses" of S" . In terms of these quantities, the stress
tensor can be expressed as

3
S" = —g P(, )k(;)X(;) (2.6)

where g is the metric and no summation is implied over
repeated indices t and (t). (The summation convention
will be suspended all throughout when t, P, or r appear as
subscripts or superscripts. )

The stress-energy tensor giving the contribution from
the azimuthal Aux through the string is elementary in the
case of a nonrevolving ring [4], the simple argument be-
ing that "T~& plays the role that T', plays for a straight
string. However, a more detailed reasoning is necessary
when the string is revolving since a revolving frame is not
inertial. The appropriate stress-energy tensor T" can
be established by employing the general method applic-
able to anisotropic Quids [5]. (The "fiuid" must be aniso-
tropic since for physical reasons we expect a pressure
along the P axis but none along the r and z axes. )

The stress-energy tensor [5] of a Quid of rest-energy
density pp, moving with a four-velocity u", is

X 5(r —a )5(z ) (2.13)

(with no summation on t or P). This tensor depends on
two scalar parameters: co, the angular velocity of the
ring, and —kp the tension in the ring. When co vanishes,
(2.13) becomes identical to the expression obtained in the
nonrevolving case [4], so that it is consistent to identify
the scalar ko with the parameter k in [4]. Consequently,
for string matter, it is reasonable to generalize the equa-
tion of state k = —p of the nonrevolving case as
kp = pp in the revolving case.

In order to support the ring partially by external radial
stresses, we assume the existence of a radial component
of T"„confined to the x-y plane (as in the case [4] of a
nonrevolving ring):

T" = b, (r, z)6"„5"—:f(—r)6(z)5~5", (2.14)

where f is a function to be determined later by stress-
energy conservation, and there is no summation over r.

The complete stress-energy tensor T" generating the
gravitational field of the revolving string is the sum of all
the above contributions (2.4), (2.13), and (2.14):

Thus we reach the conclusion that the stress-energy ten-
sor T" generated by the azimuthal Aux along the string
reads

"T" =ko(K5", +LP&)[Kg„,(a, O)+Lg„&(a,O)]

where iP~, )
satisfies

u„A~(, )
=0,

T~ =MT~ + ~T~ +ETI
V V V V

We now turn to the form of the spacetime metric g.

(2.15)
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III. METRIC AND FIELD EQUATIONS equivalently the stress-energy conservation law, deter-
mines the radial-stress function b, of (2.14) as

The most general stationary metric produced by an ax-
ially symmetric revolving source may be written [7] b (r, z ) =f(r )5(z ) =(C2/r )e(r —1)5(z), (3.1 1)

d&2 — e2vdt2+e2$ —2vr2(df A dt )2

+e " (dr +dz ) (3.1)

where v, g, g, and A are functions of r and z only.
We proceed as in the nonrevolving case [4] and make

the weak-field approximation. Thus we calculate the Ein-
stein tensor G" [7] for the metric (3.1) and retain only
first-order terms in v, il, g, and A.

Given that A is not dimensionless, it is not immediate-
ly apparent that terms of order 3 may be neglected.
However, for the stress-energy tensor (2.4), (2.13)—(2.15),
the linearized Einstein field equations show that this is
indeed the case at first order in the dimensionless quanti-
ties Gpo and Gko. (A complete discussion is presented in
the Appendix. ) Therefore, in all our future considera-
tions, the expression "weak-field approximation" will
refer to the expansion of the field equations at first order
in v, g, g, A, Gpo, and Gko.

With this approximation, Eqs. (2.2), (2.4), and
(2.11)—(2. 13) simplify greatly, and after some manipula-
tions the field equations (see the Appendix) reduce to

in which e denotes the Heaviside step function. This ex-
pression, which is similar to the one obtained in the non-
revolving case [4], may now be substituted into (3.2), so
that we have a complete set of equations of which the
metric functions v, g, il, and A are solutions.

IV. ANGULAR DEFICIT

Our main purpose in solving the field equations
(3.2) —(3.6) is to investigate the metric for conical singu-
larities and to calculate the corresponding angular deficit.
Because of the fact that canonical singularities involve
only the metric (3.1) at constant time t and constant az-
imuth P, it is sufficient to restrict attention to obtaining
explicitly the functions v and g given by (3.2) and (3.3).
We solved these equations, for different values of the con-
stants C, , in our previous work on the nonrevolving ring
[4], and it is therefore not necessary to repeat the analysis
here. We only recall that, in toroidal [8] coordinates
(t, P, cr, g), which are related to the cylindrical coordi-
nates (t, P, r, z) by

V g=8mGC25(r —a)5(z), (3.3)

V v=4~6 t (C, + C2 }5(r—a )5(z )+b(r, z )I, (3.2)
z/a =N sing, r/a =Nsinh—cr,

N =N(o, g)—=—coshcr —cosg, (4.1)

V g+ —(„=8~66,(r,z},1

r
(3.4)

(3.5)

v(o, g)~—26(C, +C2 )o. ,

g(cr, l()~ —4GC2o .

(4.2)

(4.3)

the solutions near the string (namely, for o ~ ~ ) read

V A+ —A„= —16mGC3a '5(r —a)5(z), (3.6)

in which 5 is the radial-stress function defined in (2.14),
V=—c}„+c}„V—=V+(1/r )c}„ is the Laplacian, iso is an ar-
bitrary constant of integration, and the constants C;,
1 ~ i ~ 3, are related to the parameters po, ko, co, and a of
the problem by

C, —= (go+co a ko)I o,

Cz =—(co a pa+ ko )I o,

C3 —= (pa+ ko )I ocoa,

(3.7)

(3.8)

(3.9)

Io =—1 —boa2: 2 2 (3.10)

(The quantities GC;, 1 ~i ~ 3, are dimensionless. )

The compatibility condition for (3.3)—(3.5), or

rj v~26(po ko—)cr . — (4.4)

The fact that g —v is proportional to the toroidal coordi-
nate o. indicates the presence of a conical singularity
[3,4]. The corresponding angular deficit 5l(, which is re-
lated to the ratio of the perimeter of a circle centered at
the core of the string to the radius of this circle [3,4] is
given by

(As in the nonrevolving case [4], the radial stresses (2.14)
and (3.11) do not contribute to these asymptotic forms
for v and g, and thus have no influence on the conical
singularities. }

It follows from (4.2) and (4.3) that the combination
rl
—v, which determines the metric (3.1) at constant t and

P, becomes, after substituting the definitions (3.7), (3.8),
(3.10) and noting the nontrivial cancellation of the cu-

dependent terms,

(4.5)
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and is easily calculated as

5$=4vrG(p0 —ka) . (4.6)

As announced earlier, this expression is independent of
the angular velocity co at which the ring revolves. More-
over, the angular deficit is also identical with Vilenkin's
results [1] for a straight string. (For string matter,
k0 = —p0, as explained in [4].) We have thus demonstrat-
ed, in the weak-field approximation, that a revolving cir-
cular string produces the same angular deficit as a
straight string of the same linear density.

V. SELF-SUPPORTING RING

Finally, we address the problem of whether a revolving
string can be totally self-supporting. Up to this point, we
considered a ring partially supported by the centrifugal
force produced by the revolution and partially supported
by the external radial stresses b, of (2.14) and (3.11).

For the discussion that follows, the equation of state
relating k0 and p0 will conveniently be written as

ka =(a —1)p0, (5.1)

where a is a parameter. (This particular parametrization
excludes the possibility of the physically uninteresting
case @0=0, k0&0.) String matter is characterized by
a =0, whereas nonstring matter has negative pressure for
0 (e ( 1 and positive pressure if o. ) 1.

By definition, the ring is self-supporting when no exter-
nal radial stresses are necessary to prevent collapse. This
happens, by virtue of (3.11), if and only if co takes the crit-
ical value co„;, that forces Cz to vanish. Equations (3.8)
and (3.10), upon inserting (5.1), imply that co„;, is the
solution of

O=p —1+
1 —(co„;,a )

(5.2)

The above constraint always has the trivial solution
p0=0, which in turn implies k0=0, so that spacetime is
Aat everywhere. For string matter, a=O, and this trivial
solution is the only solution that (5.2) admits. Conse-
quently, we have established that a ring of string matter
cannot be made self-supporting exclusively by centrifugal
force, but that a certain amount of external stress is
necessary to prevent collapse. In other words, trying to
support a ring of string matter purely by inducing a revo-
lution requires the string to be massless, which is non-
physical.

The solution of (5.2) in the physically interesting case
PpWO 1s

(co„;,a ) =1—a . (5.3)

We observe that co„;, is independent of 6 and, therefore,
of the gravitational field. This is a simple manifestation
of the well-known [9] "motion of the source" problem in
the linearized Einstein equations: The linear approxima-
tion is sufficient to calculate the first metric correction
produced by the source, but neglects the back reaction of
gravity onto the source, so that the source moves as if

gravity were absent. Taking this back reaction into ac-
count requires using at least second-order terms as done,
for instance, in the Einstein-Infeld-Hoffman procedure
[10] for the motion of point masses. It is important, how-
ever, to insist on the fact that, although the first-order
framework is not appropriate to study gravitational
infiuences on the motion of the source, it is perfectly valid
to study gravitational corrections to the metric and, thus,
our result on the angular deficit holds.

Further insight on the physical significance of (5.3)
may be gained by studying, in classical mechanics, the
equilibrium condition for a revolving ring of radius a,
linear mass density p, and tension T. Consider a small
arc of angular width |9 along the circle. The two extremi-
ties of this arc are subjected to a tension T which is
tangential, but the resultant force T~ at the midpoint
along the arc is purely radial and is given by
Tz =2T sin(0/2). On the other hand, the centrifugal
force Ec acting on the arc reads F& =pOco a, and conse-
quently, equilibrium is attained when co reaches the criti-
cal value co„;, satisfying

(co„;,a ) =—lim [(2/0) sin(8/2)] =—2 —T ~ T
p 0~0 p

(5.4)

This result is identical with (5.3) for T= —k0 and @=pa
since a = 1+k0/p, 0 by (5.1).

It follows from (5.3) that matter must have a negative
pressure to lead to a self-supporting ring [since a must be
less than one for (5.3) to admit a solution for co„;,]. This
is physically reasonable since a positive pressure would
tend to create an expansion of the ring, whereas a nega-
tive pressure would tend to create a collapse. Only a col-
lapse, and therefore a negative pressure, could be coun-
teracted by centrifugal force. (The gravitational force
does not contribute to the collapse at first order, as just
mentioned. )

Moreover, as the pressure becomes more negative and
approaches —pa, the critical velocity increases. The ex-
treme case of self-supporting string matter, namely, a=O,
formally implies that co„;,a =+1, which means that the
string revolves at the speed of light. This is impossible
for a massive body. Thus we reach the same conclusion
as before that string matter cannot be made self-
supporting by revolution only. (This may no longer hold
if gravity is explicitly taken into account in the motion of
the source. ) The present argument, albeit physically en-
lightening, is only formal since the weak-field approxima-
tion breaks down for a massive body if cuba =+1.

We emphasize that the stress-energy tensor used in our
treatment contains terms proportional to p0(1 —a co )

and k0(l —a co ) '. Therefore our results are valid when
the dimensionless quantities Gpa(1 —a co )

' and
Gka(1 —a2co )

' are small. In particular, the value of
cuba, for a ring partially supported by revolution and par-
tially by external stresses, is not determined by any equa-
tion [in contrast with the totally self-supporting case
(5.2), (5.3)], but is a free parameter. Therefore our main
result, namely, that the angular deficit produced by a re-
volving ring is the same as for a straight string of the
same linear density, is valid, within the confines of the
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weak-field limit, for a large range of the values of the pa-
rameter a co.

The components of the Einstein and stress-energy tensors
in the frame 0'"' are then simply

VI. CONCLUSION
a P a P» &P p O' pe &P p

(A4)

(~.ta) = ko/po ~ (6.1)

In this work we extended our previous results [4] on
the deficit-angle structure of spacetime of a nonrevolving
circular string to the case of a revolving circular string.
The circular string was prevented from collapse partially
by the centrifugal force produced by the revolution and
partially by external radial stresses that were determined
by stress-energy conservation. We established, in a
weak-field treatment, that a conical singularity exists
along the string and that the magnitude of the corre-
sponding deficit angle is the same as that produced by a
straight string of the same linear energy density.

We also investigated whether a revolving circular ring
could be totally self-supporting, that is, whether there ex-
isted a critical angular velocity co„;, at which the ring is
in equilibrium without the presence of external radial
stresses. We took string matter to have the equation of
state, ko= —po, where —ko and po denote the tension
and the linear rest energy of the string, respectively, and
found that it was impossible to have a self-supporting
string. However, for nonstring matter characterized by
the equation of state, koA —po, the critical angular veloc-
ity was established to be

GM= —2(V v)+ V + —B„(+Vg

2

+ (1+2e)(A„+ A, ),4

3 2

G-, -,
= —V g+ (I+2e)(A„+A, ),

(A5)

(A6)

Qr r 26-= —g„— + ( I+2e)( A, —3„),2 2 (A7)

1 r 2

G33 = —g„„+—(rt„—2g„)+ ( I +2e)( 2„—2, ), (A8)

and Einstein's equations read G» = —8~GT».
We now turn to the weak-field approximation. The

metric (Al) is fiat if v=r) =(=0 and A is constant. Fur-
thermore, the quantities v, g, g are dimensionless, whereas
A has dimensions of 1/length. Therefore it is not im-
mediately clear that a meaningful approximation to
Einstein's equations can be obtained by neglecting terms
of order 3

To clarify this point, we begin by calculating the Ein-
stein tensor in the orthonormal frame (A2) up to terms of
first order in v, q, g and all orders in A. The results are

where a is the radius of the ring. [The weak-field treat-
ment was shown to be valid as long as the dimensionless
quantities Gpo(1 —a co )

' and Gko(l —a co )
' are

small compared to unity. ]

1 2

G23 =g„,+ —(g, —r), ) — (1+2e)A„A, ,

G—= ——XAr
01

(A9)

(A 10)
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APPENDIX: FRAME COMPONENTS
OF THE FIELD EQUATIONS

The most general stationary metric produced by an ax-
ially symmetric source, namely, (3.1), may be written in
terms of an orthonormal basis [8'~'] as

(A 1)

where g„=diag( —1, 1, 1, 1) and

8' '= e "dt, 8"—':re~ (dP ddt)—, —
0' '—:e" dr, 0' '=e" dz .

(A2)

We define the transformation matrix e" (and its inverse
e"~) by

(A3)

M.V. gratefully acknowledges the Royal Irish
Academy for a grant from the Research Project Develop-
ment Fund and the Cork Regional Technical College (in
particular R. Langford and P. Kelleher) for a leave of ab-
sence. It is a pleasure to thank S. J. Hughes and L.
O'Raifeartaigh for enlightening discussions about this
problem.

with

—2(vt+g —2 ) g [ (3g —4 )g ]+g [ (3g—4 )g

GTo-, =G()Mo+ko) 2 5(r —a)5(z) .a( A —co)

1 —a (A —co)
(A12)

Consequently, the Einstein equation Go-, 87TGTO, be-
comes

+—[e"~-"a
] (Al 1)

r

where e—=g
—v —r), V =()„+B„and V—:V +(1/r)B„ is

the Laplacian operator. [In Eq. (Al 1), the exponentials
are only to be taken to first order in their arguments. ]

The stress-energy tensor (2.4) and (2.13) are propor-
tional to po and ko, respectively, and thus their contribu-
tions to the Einstein equations are proportional to the di-
mensionless quantities Gpa and Gko. Therefore the
metric appearing in the expressions for the stress-energy
tensors (2.4) and (2.13) may be replaced by the fiat-space
metric, namely, v=g=(=0, A =const, if attention is re-
stricted to a first-order treatment in Gpo and Gko.
Hence, without making any approximation on the order
of A, we calculate that the To& component of the total
stress-energy tensor (2.15) is
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XA =16nG(po+ko) 2 25(r —a)5(z) .co

1 —a (A —co)

(A13)

1+ 16m G(go+ ko )toBXB=
2 2 ~5(r —a)5(z) .

1 —a co [ 1+16nG (go+ ko )B ]

(A15)

We now introduce the dimensionless function B by
Expanding B in powers of the dimensionless quantity

G(po+ko), we clearly see from (A15) that the leading
term B is of zeroth order in G(pc+ ko) and satisfies

A =——16rrG(po+ko)coB . (A14) u'B= 1 5(r —a)5(z) .
1 —a co

(A16)

Note that 3 tends to zero with co, so that the above pa-
rametrization guarantees compatibility between the re-
volving and nonrevolving cases [4], where A vanishes
identically. Thus the following equation for B is
equivalent to (A13):

As a result, by virtue of (A14), the leading term in A is
proportional to G(pc+ ko ). Therefore we may neglect
second powers of A and products of A with v, q, or g in
our approximation scheme, since we only retain first
powers of Gpo and Gko.
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