476 research outputs found

    Non-extremal Localised Branes and Vacuum Solutions in M-Theory

    Get PDF
    Non-extremal overlapping p-brane supergravity solutions localised in their relative transverse coordinates are constructed. The construction uses an algebraic method of solving the bosonic equations of motion. It is shown that these non-extremal solutions can be obtained from the extremal solutions by means of the superposition of two deformation functions defined by vacuum solutions of M-theory. Vacuum solutions of M-theory including irrational powers of harmonic functions are discussed.Comment: LaTeX, 16 pages, no figures, typos correcte

    Holographic Thermalization

    Full text link
    Using the AdS/CFT correspondence, we probe the scale-dependence of thermalization in strongly coupled field theories following a quench, via calculations of two-point functions, Wilson loops and entanglement entropy in d=2,3,4. In the saddlepoint approximation these probes are computed in AdS space in terms of invariant geometric objects - geodesics, minimal surfaces and minimal volumes. Our calculations for two-dimensional field theories are analytical. In our strongly coupled setting, all probes in all dimensions share certain universal features in their thermalization: (1) a slight delay in the onset of thermalization, (2) an apparent non-analyticity at the endpoint of thermalization, (3) top-down thermalization where the UV thermalizes first. For homogeneous initial conditions the entanglement entropy thermalizes slowest, and sets a timescale for equilibration that saturates a causality bound over the range of scales studied. The growth rate of entanglement entropy density is nearly volume-independent for small volumes, but slows for larger volumes.Comment: 39 pages, 24 figure

    Free Energy Minimizers for a Two--Species Model with Segregation and Liquid-Vapor Transition

    Full text link
    We study the coexistence of phases in a two--species model whose free energy is given by the scaling limit of a system with long range interactions (Kac potentials) which are attractive between particles of the same species and repulsive between different species.Comment: 32 pages, 1 fig, plain tex, typeset twic

    On some nonlinear extensions of the angular momentum algebra

    Full text link
    Deformations of the Lie algebras so(4), so(3,1), and e(3) that leave their so(3) subalgebra undeformed and preserve their coset structure are considered. It is shown that such deformed algebras are associative for any choice of the deformation parameters. Their Casimir operators are obtained and some of their unitary irreducible representations are constructed. For vanishing deformation, the latter go over into those of the corresponding Lie algebras that contain each of the so(3) unitary irreducible representations at most once. It is also proved that similar deformations of the Lie algebras su(3), sl(3,R), and of the semidirect sum of an abelian algebra t(5) and so(3) do not lead to associative algebras.Comment: 22 pages, plain TeX + preprint.sty, no figures, to appear in J.Phys.

    Calculation of The Band Gap Energy and Study of Cross Luminescence in Alkaline-Earth Dihalide Crystals

    Full text link
    The band gap energy as well as the possibility of cross luminescence processes in alkaline-earth dihalide crystals have been calculated using the ab initio Perturbed-Ion (PI) model. The gap is calculated in several ways: as a difference between one-electron energy eigenvalues and as a difference between total energies of appropriate electronic states of the crystal, both at the HF level and with inclusion of Coulomb correlation effects. In order to study the possibility of ocurrence of cross luminescence in these materials, the energy difference between the valence band and the upmost core band for some representative crystals has been calculated. Both calculated band gap energies and cross luminescence predictions compare very well with the available experimental results.Comment: LaTeX file containing 8 pages plus 1 postscript figure. Final version accepted for publication in The Journal of the Physical Society of Japan. It contains a more complete list of references, as well as a more detailed comparison with previous theoretical investigations on the subjec

    Brane Baldness vs. Superselection Sectors

    Get PDF
    The search for intersecting brane solutions in supergravity is a large and profitable industry. Recently, attention has focused on finding localized forms of known `delocalized' solutions. However, in some cases, a localized version of the delocalized solution simply does not exist. Instead, localized separated branes necessarily delocalize as the separation is removed. This phenomenon is related to black hole no-hair theorems, i.e. `baldness.' We continue the discussion of this effect and describe how it can be understood, in the case of Dirichlet branes, in terms of the corresponding intersection field theory. When it occurs, it is associated with the quantum mixing of phases and lack of superselection sectors in low dimensional field theories. We find surprisingly wide agreement between the field theory and supergravity both with respect to which examples delocalize and with respect to the rate at which this occurs.Comment: 26 pages, ReVTeX, 2 figures, reference added, version to appear in PR

    Reflection and transmission of waves in surface-disordered waveguides

    Get PDF
    The reflection and transmission amplitudes of waves in disordered multimode waveguides are studied by means of numerical simulations based on the invariant embedding equations. In particular, we analyze the influence of surface-type disorder on the behavior of the ensemble average and fluctuations of the reflection and transmission coefficients, reflectance, transmittance, and conductance. Our results show anomalous effects stemming from the combination of mode dispersion and rough surface scattering: For a given waveguide length, the larger the mode transverse momentum is, the more strongly is the mode scattered. These effects manifest themselves in the mode selectivity of the transmission coefficients, anomalous backscattering enhancement, and speckle pattern both in reflection and transmission, reflectance and transmittance, and also in the conductance and its universal fluctuations. It is shown that, in contrast to volume impurities, surface scattering in quasi-one-dimensional structures (waveguides) gives rise to the coexistence of the ballistic, diffusive, and localized regimes within the same sample.Comment: LaTeX (REVTeX), 12 pages with 14 EPS figures (epsf macro), minor change

    Holographic Charged Fluid with Anomalous Current at Finite Cutoff Surface in Einstein-Maxwell Gravity

    Full text link
    The holographic charged fluid with anomalous current in Einstein-Maxwell gravity has been generalized from the infinite boundary to the finite cutoff surface by using the gravity/fluid correspondence. After perturbing the boosted Reissner-Nordstrom (RN)-AdS black brane solution of the Einstein-Maxwell gravity with the Chern-Simons term, we obtain the first order perturbative gravitational and Maxwell solutions, and calculate the stress tensor and charged current of the dual fluid at finite cutoff surfaces which contains undetermined parameters after demanding regularity condition at the future horizon. We adopt the Dirichlet boundary condition and impose the Landau frame to fix these parameters, finally obtain the dependence of transport coefficients in the dual stress tensor and charged current on the arbitrary radical cutoff rcr_c. We find that the dual fluid is not conformal, but it has vanishing bulk viscosity, and the shear viscosity to entropy density ratio is universally 1/4Ď€1/4\pi. Other transport coefficients of the dual current turns out to be cutoff-dependent. In particular, the chiral vortical conductivity expressed in terms of thermodynamic quantities takes the same form as that of the dual fluid at the asymptotic AdS boundary, and the chiral magnetic conductivity receives a cutoff-dependent correction which vanishes at the infinite boundary.Comment: 19 pages, v2: references added, v3: typos corrected, v5: typos corrected, version accepted for publication in JHE

    Background field formalism and construction of effective action for N=2, d=3 supersymmetric gauge theories

    Full text link
    We review the background field method for three-dimensional Yang-Mills and Chern-Simons models in N=2 superspace. Superfield proper time (heat kernel) techniques are developed and exact expressions of heat kernels for constant backgrounds are presented. The background field method and heat kernel techniques are applied for evaluating the low-energy effective actions in N=2 supersymmetric Yang-Mills and Chern-Simons models as well as in N=4 and N=8 SYM theories.Comment: 1+30 pages, dedicated to the 60 year Jubilee of Professor D.I. Kazakov; references added. arXiv admin note: substantial text overlap with arXiv:1010.496
    • …
    corecore