187 research outputs found
Collimation of high current fast electrons in dense plasmas with a tightly focused precursor intense laser pulse
High-current fast electrons at the mega-ampere level provide a unique way to generate high-energy density states of matter, which are related to many applications. However, the large divergence angle of fast electrons typically over 50 degrees is a significant disadvantage. The guiding effect of the self-generated azimuthal magnetic fields on fast electron current is found to be very limited due to the cone-shaped spatial structure of the fields. In this work, we present a new understanding of the collimation conditions of fast electrons under such a magnetic field structure. It is shown that the transverse peak position of the magnetic field layer plays a more crucial role in collimating the fast electrons than its magnitude. Based upon this, a new two-pulse collimating scheme is proposed, where a guiding precursor pulse is adopted to form proper azimuthal magnetic fields and the main pulse is for fast electron generation as usual. The present scheme can be implemented relatively easily with the precursor lasers at the 10 TW level with a duration of 200 femtoseconds, with which the divergence angle of fast electrons driven by the main pulse can be confined within a few degrees. Practical applications of our scheme can be found in high-energy density science
Recommended from our members
Controllable Laser Ion Acceleration
In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction
Asymptotic behavior of solutions to the -Yamabe equation near isolated singularities
-Yamabe equations are conformally invariant equations generalizing
the classical Yamabe equation. In an earlier work YanYan Li proved that an
admissible solution with an isolated singularity at to the
-Yamabe equation is asymptotically radially symmetric. In this work
we prove that an admissible solution with an isolated singularity at to the -Yamabe equation is asymptotic to a radial
solution to the same equation on . These results
generalize earlier pioneering work in this direction on the classical Yamabe
equation by Caffarelli, Gidas, and Spruck. In extending the work of Caffarelli
et al, we formulate and prove a general asymptotic approximation result for
solutions to certain ODEs which include the case for scalar curvature and
curvature cases. An alternative proof is also provided using
analysis of the linearized operators at the radial solutions, along the lines
of approach in a work by Korevaar, Mazzeo, Pacard, and Schoen.Comment: 55 page
A Measurement of Psi(2S) Resonance Parameters
Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been
measured in the vicinity of the Psi(2S) resonance using the BESII detector
operated at the BEPC. The Psi(2S) total width; partial widths to hadrons,
pi+pi- J/Psi, muons; and corresponding branching fractions have been determined
to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)=
(2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)=
(97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%,
respectively.Comment: 8 pages, 6 figure
Measurements of the observed cross sections for exclusive light hadrons containing at , 3.650 and 3.6648 GeV
By analyzing the data sets of 17.3, 6.5 and 1.0 pb taken,
respectively, at , 3.650 and 3.6648 GeV with the BES-II
detector at the BEPC collider, we measure the observed cross sections for
, , ,
and at the three energy
points. Based on these cross sections we set the upper limits on the observed
cross sections and the branching fractions for decay into these
final states at 90% C.L..Comment: 7 pages, 2 figure
Partial wave analysis of J/\psi \to \gamma \phi \phi
Using events collected in the BESII detector, the
radiative decay is
studied. The invariant mass distribution exhibits a near-threshold
enhancement that peaks around 2.24 GeV/.
A partial wave analysis shows that the structure is dominated by a
state () with a mass of
GeV/ and a width of GeV/. The
product branching fraction is: .Comment: 11 pages, 4 figures. corrected proof for journa
Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays
By analyzing about 33 data sample collected at and around 3.773
GeV with the BES-II detector at the BEPC collider, we directly measure the
branching fractions for the neutral and charged inclusive semimuonic decays
to be and , and determine the ratio of the two branching
fractions to be
A study of charged kappa in
Based on events collected by BESII, the decay
is studied. In the invariant mass
spectrum recoiling against the charged , the charged
particle is found as a low mass enhancement. If a Breit-Wigner function of
constant width is used to parameterize the kappa, its pole locates at MeV/. Also in this channel,
the decay is observed for the first time.
Its branching ratio is .Comment: 14 pages, 4 figure
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
- âŠ