1,091 research outputs found
Further study on 5q configuration states in the chiral SU(3) quark model
The structure of the configuration states with strangeness
is further studied in the chiral SU(3) quark model based on our
previous work. We calculate the energies of fifteen low configurations of the
system, four lowest configurations of with
partition , four of with
partition and seven of
with partition . Some modifications are
made in this further study, i.e., the orbital wave function is extended as an
expansion of 4 different size harmonic oscillator forms; three various forms
(quadratic, linear and error function form) of the color confinement potential
are considered; the states with partition are added, which are unnegligible in the case and were
not considered in our previous paper, further the mixing between configurations
and is
also investigated. The results show that the T=0 state is still always the
lowest one for both and states, and
state is always lower than that of .
All of these modifications can only offer several tens to hundred MeV effect,
and the theoretical value of the lowest state is still about 245 MeV higher
than the experimental mass of . It seems to be difficult to get the
calculated mass close to the observed one with the reasonable parameters in the
framework of the chiral SU(3) quark model when the model space is chosen as a
cluster.Comment: 16 page
From semiclassical transport to quantum Hall effect under low-field Landau quantization
The crossover from the semiclassical transport to quantum Hall effect is
studied by examining a two-dimensional electron system in an AlGaAs/GaAs
heterostructure. By probing the magneto-oscillations, it is shown that the
semiclassical Shubnikov-de Haas (SdH) formulation can be valid even when the
minima of the longitudinal resistivity approach zero. The extension of the
applicable range of the SdH theory could be due to the damping effects
resulting from disorder and temperature. Moreover, we observed plateau-plateau
transition like behavior with such an extension. From our study, it is
important to include the positive magnetoresistance to refine the SdH theory.Comment: 11 pages, 5 figure
A study of pentaquark state in the chiral SU(3) quark model
The structure of the pentaquark state uudd-sbar is studied in the chiral
SU(3) quark model as well as in the extended chiral SU(3) quark model, in which
the vector meson exchanges are included. Four configurations of JP=1/2- and
four of JP=1/2+ are considered. The results show that the isospin T=0 state is
always the lowest one for both JP=1/2- and JP=1/2+ cases in various models. But
the theoretical value of the lowest one is still about 200-300 MeV higher than
the experimental mass of . It seems that a dynamical calculation should
be done for the further study.Comment: 9 page
Proteomic profiling of proteins associated with the rejuvenation of Sequoia sempervirens (D. Don) Endl
Background: Restoration of rooting competence is important for rejuvenation in Sequoia sempervirens (D. Don) Endl and is achieved by repeatedly grafting Sequoia shoots after 16 and 30 years of cultivation in vitro. Results: Mass spectrometry-based proteomic analysis revealed three proteins that differentially accumulated in different rejuvenation stages, including oxygen-evolving enhancer protein 2 (OEE2), glycine-rich RNA-binding protein (RNP), and a thaumatin-like protein. OEE2 was found to be phosphorylated and a phosphopeptide (YEDNFDGNSNVSVMVpTPpTDK) was identified. Specifically, the protein levels of OEE2 increased as a result of grafting and displayed a higher abundance in plants during the juvenile and rejuvenated stages. Additionally, SsOEE2 displayed the highest expression levels in Sequoia shoots during the juvenile stage and less expression during the adult stage. The expression levels also steadily increased during grafting. Conclusion: Our results indicate a positive correlation between the gene and protein expression patterns of SsOEE2 and the rejuvenation process, suggesting that this gene is involved in the rejuvenation of Sequoia sempervirens
The effect of charge and albumin on cellular uptake of supramolecular polymer nanostructures
Intracellular delivery of functional biomolecules by using supramolecular polymer nanostructures has gained significant interest. Here, various charged supramolecular ureido-pyrimidinone (UPy)-aggregates were designed and formulated via a simple “mix-and-match” method. The cellular internalization of these UPy-aggregates in the presence or absence of serum proteins by phagocytic and non-phagocytic cells, i.e., THP-1 derived macrophages and immortalized human kidney cells (HK-2 cells), was systematically investigated. In the presence of serum proteins the UPy-aggregates were taken up by both types of cells irrespective of the charge properties of the UPy-aggregates, and the UPy-aggregates co-localized with mitochondria of the cells. In the absence of serum proteins only cationic UPy-aggregates could be effectively internalized by THP-1 derived macrophages, and the internalized UPy-aggregates either co-localized with mitochondria or displayed as vesicular structures. While the cationic UPy-aggregates were hardly internalized by HK-2 cells and could only bind to the membrane of HK-2 cells. With adding and increasing the amount of serum albumin in the cell culture medium, the cationic UPy-aggregates were gradually taken up by HK-2 cells without anchoring on the cell membranes. It is proposed that the serum albumin regulates the cellular internalization of UPy-aggregates. These results provide fundamental insights for the fabrication of supramolecular polymer nanostructures for intracellular delivery of therapeutics.</p
Establishment of an arabinose-inducible system in Stenotrophomonas maltophilia
A pBBad22T-derived conditioned arabinose (Ara)-inducible expression system was evaluated in Stenotrophomonas maltophilia (an opportunistic pathogen and has gained increasing attention as a cause of healthcare-associated infection). S. maltophilia cannot grow well when Ara is the sole available carbon source. The induction kinetic study, optimal inducer concentration determination, and depletion experiment were performed by using a xylE gene fusion construct, pBxylE, to monitor the expression of pBBad22T in S. maltophilia. For induction survey, the expression of catechol 2,3-dioxygenase (C23O), encoded by xylE gene, continuously increases during an 8-h induced course and can be modulated by different inducer concentrations. The applied induction condition of pBBad22T in S. maltophilia is the inducer concentration ranging from 0.1% to 0.5% for an induction time of 4 h. For repression evaluation, the C23O expression is rapidly turned off within 30 min after the removal of Ara. Accordingly, the established Ara-inducible system can provide a convenient tool for the study of S. maltophilia
SNX27 and SORLA interact to reduce amyloidogenic subcellular distribution and processing of amyloid precursor protein
Proteolytic generation of amyloidogenic amyloid {beta} (A{beta}) fragments from the amyloid precursor protein (APP) significantly contributes to Alzheimer's disease (AD). Although amyloidogenic APP proteolysis can be affected by trafficking through genetically associated AD components such as SORLA, how SORLA functionally interacts with other trafficking components is yet unclear. Here, we report that SNX27, an endosomal trafficking/recycling factor and a negative regulator of the {gamma}-secretase complex, binds to the SORLA cytosolic tail to form a ternary complex with APP. SNX27 enhances cell surface SORLA and APP levels in human cell lines and mouse primary neurons, and depletion of SNX27 or SORLA reduces APP endosome-to-cell surface recycling kinetics. SNX27 overexpression enhances the generation of cell surface APP cleavage products such as soluble alpha-APP C-terminal fragment (CTF{alpha}) in a SORLA-dependent manner. SORLA-mediated A{beta} reduction is attenuated by downregulation of SNX27. This indicates that an SNX27/SORLA complex functionally interacts to limit APP distribution to amyloidogenic compartments, forming a non-amyloidogenic shunt to promote APP recycling to the cell surface
Acid-sensing ion channel 3 mediates peripheral anti-hyperalgesia effects of acupuncture in mice inflammatory pain
Background: Peripheral tissue inflammation initiates hyperalgesia accompanied by tissue acidosis, nociceptor activation, and inflammation mediators. Recent studies have suggested a significantly increased expression of acid-sensing ion channel 3 (ASIC3) in both carrageenan- and complete Freund's adjuvant (CFA)-induced inflammation. This study tested the hypothesis that acupuncture is curative for mechanical hyperalgesia induced by peripheral inflammation. Methods: Here we used mechanical stimuli to assess behavioral responses in paw and muscle inflammation induced by carrageenan or CFA. We also used immunohistochemistry staining and western blot methodology to evaluate the expression of ASIC3 in dorsal root ganglion (DRG) neurons. Results: In comparison with the control, the inflammation group showed significant mechanical hyperalgesia with both intraplantar carrageenan and CFA-induced inflammation. Interestingly, both carrageenan- and CFA-induced hyperalgesia were accompanied by ASIC3 up-regulation in DRG neurons. Furthermore, electroacupuncture (EA) at the ST36 rescued mechanical hyperalgesia through down-regulation of ASIC3 overexpression in both carrageenan- and CFA-induced inflammation. Conclusions: In addition, electrical stimulation at the ST36 acupoint can relieve mechanical hyperalgesia by attenuating ASIC3 overexpression
Defect-Structure-Related Ferroelectric Properties of K0.5Na0.5NbO3 Lead-Free Piezoelectric Ceramics
Lead-free piezoelectric ceramics K0.5Na0.5NbO3 (KNN) doped with Cu, Fe, and Ni have been prepared by a conventional ceramic process. The results reveal that Cu-doped KNN ceramic exhibits double-loop-like characteristics, while Fe & Ni-doped KNN ceramics show normal single loops. EPR spectra verified the formation of irreversible defect complex (DC1) and (DC2) in Cu-doped ceramics, while defect complexes were observed in Fe-doped ceramics and very small defect complex signal in Ni-doped ceramics. The experimental results show that the ferroelectric properties of KNN ceramics are strongly related to these defect structures
- …