183 research outputs found
Few-Body Systems Composed of Heavy Quarks
Within the past ten years many new hadrons states were observed
experimentally, some of which do not fit into the conventional quark model. I
will talk about the few-body systems composed of heavy quarks, including the
charmonium-like states and some loosely bound states.Comment: Plenary talk at the 20th International IUPAP Conference on Few-Body
Problems in Physics, to appear in Few Body Systems (2013
Characteristics of damaged asphalt mixtures in tension and compression
This paper addresses the measurement and modelling of the damaged properties of asphalt mixtures including the fracture, healing and viscoplastic deformation of the asphalt mixtures in both tensile and compressive loading as being affected by their composition and conditioning with ageing and exposure to temperature and moisture. An energy-based mechanics is applied to obtain the material fundamental properties such as surface energies, bond energies, anisotropy, yield functions and plastic potential functions that are valid for actual asphalt mixtures, viscoelastic crack growth criteria under both tensile and compressive loading, a simple mechanics-based method of determining the fatigue endurance limit, and the measurement and prediction of healing in restoring the damage done by fracture. Healing is anti-fracture and cracking is the net result of the interplay of these two complimentary mechanisms. Because fracture in asphalt mixtures is not the growth of a single crack but the simultaneous growth of multiple cracks that start out as air voids, this fact leads to the use of the growth of damage density to characterise fracture in an asphalt mixture. It was discovered that the form of Paris’ law applies to the growth of damage density of asphalt mixtures in both tensile and compressive loadings. The importance of this fact lies in many developments from this discovery, e.g. compressive monotonic loading of cylindrical test samples permits a direct determination of the Paris’ Law coefficient and exponent. In all cases, measured material properties are presented as they vary with mixture composition and with conditioning such as moisture and ageing, both in the lab and in the field. The measurements of these properties are made simply, quickly and accurately by the use of mechanics so that an entire characterisation of the properties of an asphalt mixture in tension and compression can be completed in the space of one day. The net effect is to reduce the efforts expended in the lab and the systematic error due to the assumptions made by the existing models and simultaneously to increase the efficiency and cost-effectiveness of materials testing and raise the reliability of the design of mixtures, pavement structures and specifications and the prediction of the life cycles in as-built pavements
Respuestas del δ13C foliar y características foliares a la precipitación y temperatura en un ecosistema árido del noroeste de China
El δ13C foliar es ampliamente usado para explicar estrategias relacionadas con la disponibilidad de recursos en diferentes ambientes. Sin embargo, la respuesta conjunta del δ13C foliar a la precipitación y temperatura así como la relación entre el δ13C foliar y las características foliares no están claras. El δ13C foliar y su relación con las características foliares [tamaño de hoja (LS), longitud foliar (LL), ancho foliar (LW), relación entre la longitud y el ancho foliar (L:W), área foliar específica (SLA) y concentración de N foliar (en una base de peso seco) (Nmass)] fueron investigadas en la especie de arbusto dominante Nitraria tangutorum Bobr en la región árida (Dengkou y Minqin) del noroeste de China. El estudio se efectuó bajo condiciones de varias cantidades de precipitación simuladas (PGS) y temperaturas ambientales (TGS) en las estaciones de crecimiento de 2008, 2009 y 2010. Los resultados mostraron que LS, LW, LL, SLA y Nmass se incrementaron significativamente cuando las cantidades de PGS se incrementaron, pero hubo tendencias de reducción en dichas características cuando las TGS aumentaron. Sin embargo, la mayoría de las relaciones negativas entre las características foliares y las TGS no fueron obvias en Minqin. En ambos sitios, L:W se incrementó cuando las PGS y TGS aumentaron. Hubo un cambio en la relación negativa entre el δ13C foliar-PGS a través de Minqin y Dengkou, lo cual condujo a la falta de efectos de la precipitación en el δ13C foliar a través de ambos sitios, y mayor δ13C foliar a menor precipitación en Minqin. A través de Minqin y Dengkou, PGS solo pudo explicar un 14% de la variación en el δ13C foliar. La combinación de PGS y TGS pudo explicar un 64% de la variación en el δ13C foliar. Las características foliares (LW y L:W) mejoraron aún más la estimación del δ13C foliar. Las combinaciones de PGS, TGS, LW y L:W pudieron explicar un 84% de la variación en el δ13C foliar. Nuestro estudio demostró la importancia de las características foliares en explorar las respuestas del δ13C foliar a cambios globales en ecosistemas áridos.Leaf δ13C is widely used to explain plant strategies related to resource availability in different environments. To understand the coupled response of leaf δ13C to precipitation, temperature and the relationship between leaf δ13C and leaf traits in arid ecosystems, the leaf δ13C and leaf traits (leaf size (LS), leaf length (LL), leaf width (LW), leaf length to width ratio (L:W), specific leaf area (SLA) and mass-based leaf nitrogen concentration (Nmass)) of Nitraria tangutorum Bobr. under simulated increasing precipitation (PGS) and ambient temperature (TGS) in plant growing season from 2008 to 2010 and the relationships between leaf δ13C and leaf traits were investigated in the arid region (Dengkou and Minqin) of northwestern China. Our results showed that LS, LW, LL, SLA and Nmass significantly increased with increasing PGS, but had downward tendencies with increasing TGS although the majority of the negative relationships between leaf traits and TGS were not obvious in Minqin. At the two study sites, L:W increased simultaneously with increasing PGS and TGS. There was a shift in the negative leaf δ13C-PGS relationship across Minqin and Dengkou, which conduce to the lacking effect of precipitation on leaf δ13C across the two sites and higher leaf δ13C in lower precipitation fields in Minqin. Across Minqin and Dengkou, PGS could only explain 14% of the variation in leaf δ13C. The combinations of PGS and TGS could explain 64% of the variation in leaf δ13C. Leaf traits (LW and L:W) could be used to further improve the estimation of leaf δ13C. The combinations of PGS, TGS, LW and L:W could explain 84 % of the variation in leaf δ13C. Our study demonstrated the importance of leaf traits in exploring the responses of leaf δ13C to global changes in arid ecosystems.Fil: Xin, Z.M.. Chinese Academy of Forestry. Institute of Desertification Studies; China. Chinese Academy of Forestry. Experimental Center of Desert Forestry; ChinaFil: Liu, M.H.. Chinese Academy of Forestry. Experimental Center of Desert Forestry; ChinaFil: Lu, Q.. Chinese Academy of Forestry. Institute of Desertification Studies; China. State Forestry Administration. Kumtag Desert Ecosystem Research Station; ChinaFil: Busso, Carlos Alberto. Universidad Nacional del Sur. Departamento de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. State Forestry Administration. Kumtag Desert Ecosystem Research Station; ChinaFil: Zhu, Y.J.. State Forestry Administration. Kumtag Desert Ecosystem Research Station; China. Chinese Academy of Forestry. Institute of Desertification Studies; ChinaFil: Li, Z.. Chinese Academy of Forestry. Experimental Center of Desert Forestry; ChinaFil: Huang, Y.R.. Chinese Academy of Forestry. Experimental Center of Desert Forestry; ChinaFil: Li, X.L.. Chinese Academy of Forestry. Experimental Center of Desert Forestry; ChinaFil: Luo, F.M.. Chinese Academy of Forestry. Experimental Center of Desert Forestry; ChinaFil: Bao, F.. Chinese Academy of Forestry. Institute of Desertification Studies; ChinaFil: Qian, J.Q.. Henan Agricultural University. College of Forestry; ChinaFil: Li, Y.H.. Chinese Academy of Forestry. Institute of Desertification Studies; China. State Forestry Administration. Kumtag Desert Ecosystem Research Station; Chin
Analysis of community structure of a microbial consortium capable of degrading benzo(a)pyrene by DGGE
A microbial consortium was obtained by enrichment culture of sea water samples collected from Botan oil port in Xiamen, China, using the persistent high concentration of a mixture of polycyclic aromatic hydrocarbons enrichment strategy. Denaturing gradient gel electrophoresis (DGGE) was used to investigate the bacterial composition and community dynamic changes based on PCR amplification of 16S rRNA genes during batch culture enrichment. Using the spray-plate method, three bacteria, designated as BL01, BL02 and BL03, which corresponded to the dominant bands in the DGGE profiles, were isolated from the consortium. Sequence analysis showed that BL01, BL02 and BL03 were phylogenetically close to Ochrobactrum sp., Stenotrophomonas maltophilia and Pseudomonas fluorescens, respectively. The degradation of benzo(a)pyrene (BaP), a model high-molecular-weight polycyclic aromatic hydrocarbon (HMW PAH) compound was investigated using individual isolates, a mixture of the three isolates, and the microbial consortium (BL) originally isolated from the oil port sea water. Results showed that the order of degradative ability was BL > the mixture of the three isolates > individual isolates. BL degraded 44.07% of the 10 ppm BaP after 14 days incubation, which showed the highest capability for HMW PAH compound degradation. Our results revealed that this high selective pressure strategy was feasible and effective in enriching the HMW PAH-degraders from the original sea water samples. (C) 2009 Elsevier Ltd. All rights reserved
The molecular systems composed of the charmed mesons in the doublet
We study the possible heavy molecular states composed of a pair of charm
mesons in the H and S doublets. Since the P-wave charm-strange mesons
and are extremely narrow, the future experimental
observation of the possible heavy molecular states composed of
and may be feasible if they really exist.
Especially the possible states may be searched for via the
initial state radiation technique.Comment: 42 pages, 4 tables, 31 figures. Improved numerical results and
Corrected typos
Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta
Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector,
the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are
measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and
(7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure
BESII Detector Simulation
A Monte Carlo program based on Geant3 has been developed for BESII detector
simulation. The organization of the program is outlined, and the digitization
procedure for simulating the response of various sub-detectors is described.
Comparisons with data show that the performance of the program is generally
satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons
The branching fractions for the inclusive Cabibbo-favored ~K*0 and
Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample
of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with
the BES-II detector at the BEPC collider. The branching fractions for the
decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 ->
\~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and
BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching
fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X)
< 6.6%
- …