194 research outputs found

    Iron isotope compositions of coexisting sulfide and silicate minerals in Sudbury-type ores from the Jinchuan Ni-Cu- sulfide deposit: A perspective on possible core-mantle iron isotope fractionation

    Get PDF
    Many studies have shown that the average iron (Fe) isotope compositions of mantle-derived rocks, mantle peridotite and model mantle are close to those of chondrites. Therefore, it is considered that chondrite values represent the bulk Earth Fe isotope composition. However, this is a brave assumption because nearly 90% Fe of the earth is in the core, whose Fe isotope composition is unknown, but is required to construct bulk earth Fe isotope composition. We approach the problem by assuming that the earth’s core separation can be approximated in terms of the Sudbury-type Ni-Cu sulfide mineralization, where sulfide-saturated mafic magmas segregate into immiscible sulfide liquid and silicate liquid. Their density/buoyancy controlled stratification and solidification produced net-textured ores above massive ores and below disseminated ores. The coexisting sulfide minerals (pyrrhotite (Po) > pentlandite (Pn) > chalcopyrite (Cp)) and silicate minerals (olivine (Ol) > orthopyroxene (Opx) > clinopyroxene (Cpx)) are expected to hold messages on Fe isotope fractionation between the two liquids before their solidification. We studied the net-textured ores of the Sudbury-type Jinchuan Ni-Cu sulfide deposit. The sulfide minerals show varying δ56Fe values (-1.37 ~ -0.74‰ (Po) < 0.09 ~ 0.56‰ (Cp) < 0.53 ~ 1.05‰ (Pn), but silicate minerals (Ol, Opx, Cpx) have δ56Fe values close to chondrites (δ56Fe = -0.01±0.01‰). The heavy δ56Fe value (0.52 ~ 0.60‰) of serpentines may reflect Fe isotopes exchange with the coexisting pyrrhotite with light δ56Fe. We ob- tained an equilibrium fractionation factor of Δ56Fesilicate-sulfide = ~ 0.51‰ between reconstructed silicate liquid (δ56Fe = ~ 0.21‰) and sulfide liquid (δ56Fe = ~ -0.30‰), or Δ56Fesilicate-sulfide = ~ 0.36‰ between the weighted mean bulk-silicate minerals (δ56Fe[0.70ol,0.25opx,0.05cpx] = 0.06‰) with weighted mean bulk- sulfide minerals (δ56Fe = ~ -0.30‰). Our study indicates that significant Fe isotope fractionation does take place between silicate and sulfide liquids during the Sudbury-type sulfide mineralization. We hypothesize that significant iron isotope fractionation must have taken place during core-mantle segregation, and the bulk earth may have lighter Fe isotope composition than chondrites although Fe isotope analysis on experimental sulfide-silicate liquids produced under the varying mantle depth conditions is needed to test our results. We advocate the importance of further research on the subject. Given the close Fe-Ni association in the magmatic mineralization and the majority of Earth’s Ni is also in the core, we infer that Ni isotope fractionation must also have taken place during the core separation that needs attention

    Effect of Subband Landau Level Coupling to the Linearly Dispersing Collective Mode in a Quantum Hall Ferromagnet

    Full text link
    In a recent experiment (Phys. Rev. Lett. {\bf 87}, 036903 (2001)), Spielman et al observed a linearly dispersing collective mode in quantum Hall ferromagnet. While it qualitatively agrees with the Goldstone mode dispersion at small wave vector, the experimental mode velocity is slower than that calculated by previous theories by a factor about 0.55. A better agreement with the experimental data may possibly be achieved by taking the subband Landau level coupling into account due to the finiteness of the layer thickness. A novel coupling of quantum fluctuation to the tunneling is briefly discussed.Comment: 4 pages; published versio

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Direct Measurements of the Branching Fractions for D0Ke+νeD^0 \to K^-e^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0Ke+νeD^0 \to K^-e ^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0Ke+νeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0πe+νeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0Ke+νe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0πe+νe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be f+K(0)=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and f+π(0)=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be f+π(0)/f+K(0)=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar

    Full text link
    The branching ratios and Angular distributions for J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons

    Full text link
    The branching fractions for the inclusive Cabibbo-favored ~K*0 and Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with the BES-II detector at the BEPC collider. The branching fractions for the decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 -> \~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X) < 6.6%

    Study of J/ψωK+KJ/\psi \to \omega K^+K^-

    Get PDF
    New data are presented on J/ψωK+KJ/\psi \to \omega K^+K^- from a sample of 58M J/ψJ/\psi events in the upgraded BES II detector at the BEPC. There is a conspicuous signal for f0(1710)K+Kf_0(1710) \to K^+K^- and a peak at higher mass which may be fitted with f2(2150)KKˉf_2(2150) \to K\bar K. From a combined analysis with ωπ+π\omega \pi ^+ \pi ^- data, the branching ratio BR(f0(1710)ππ)/BR(f0(1710)KKˉ)BR(f_0(1710)\to\pi\pi)/BR(f_0(1710) \to K\bar K) is <0.11< 0.11 at the 95% confidence level.Comment: 11 pages, 5 figures. Submitted to Phys. Lett.

    Search for the Lepton Flavor Violation Processes J/ψJ/\psi \to μτ\mu\tau and eτe\tau

    Full text link
    The lepton flavor violation processes J/ψμτJ/\psi \to \mu\tau and eτe\tau are searched for using a sample of 5.8×107\times 10^7 J/ψJ/\psi events collected with the BESII detector. Zero and one candidate events, consistent with the estimated background, are observed in J/ψμτ,τeνˉeντJ/\psi \to \mu\tau, \tau\to e\bar\nu_e\nu_{\tau} and J/ψeτ,τμνˉμντJ/\psi\to e\tau, \tau\to\mu\bar\nu_{\mu}\nu_{\tau} decays, respectively. Upper limits on the branching ratios are determined to be Br(J/ψμτ)<2.0×106Br(J/\psi\to\mu\tau)<2.0 \times 10^{-6} and Br(J/ψeτ)<8.3×106Br(J/\psi \to e\tau) < 8.3 \times10^{-6} at the 90% confidence level (C.L.).Comment: 9 pages, 2 figure

    The σ\sigma pole in J/ψωπ+πJ/\psi \to \omega \pi^+ \pi^-

    Full text link
    Using a sample of 58 million J/ψJ/\psi events recorded in the BESII detector, the decay J/ψωπ+πJ/\psi \to \omega \pi^+ \pi^- is studied. There are conspicuous ωf2(1270)\omega f_2(1270) and b1(1235)πb_1(1235)\pi signals. At low ππ\pi \pi mass, a large broad peak due to the σ\sigma is observed, and its pole position is determined to be (541±39)(541 \pm 39) - ii (252±42)(252 \pm 42) MeV from the mean of six analyses. The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
    corecore