70 research outputs found

    Computer program for the relativistic mean field description of the ground state properties of even-even axially deformed nuclei

    Get PDF
    A Fortran program for the calculation of the ground state properties of axially deformed even-even nuclei in the relativistic framework is presented. In this relativistic mean field (RMF) approach a set of coupled differential equations namely the Dirac equation with potential terms for the nucleons and the Glein-Gordon type equations with sources for the meson and the electromagnetic fields are to be solved self-consistently. The well tested basis expansion method is used for this purpose. Accordingly a set of harmonic oscillator basis generated by an axially deformed potential are used in the expansion. The solution gives the nucleon spinors, the fields and level occupancies, which are used in the calculation of the ground state properties.Comment: 18 pages, LaTex, 6 p.s figures, To appear in Comput. Phys. Commu

    Roles of proton-neutron interactions in alpha-like four-nucleon correlations

    Get PDF
    An extended pairing plus QQ force model, which has been shown to successfully explain the nuclear binding energy and related quantities such as the symmetry energy, is applied to study the alpha-like four-nucleon correlations in 1f_{7/2} shell nuclei. The double difference of binding energies, which displays a characteristic behavior at NZN \approx Z, is interpreted in terms of the alpha-like correlations. Important roles of proton-neutron interactions forming the alpha-like correlated structure are discussed.Comment: 10 pages, 2 figures, RevTex, submitted to Phys. Rev.

    Microscopic Description of Super Heavy Nuclei

    Full text link
    The results of extensive microscopic Relativistic Mean Field (RMF) calculations for the nuclei appearing in the alpha - decay chains of recently discovered superheavy elements with Z = 109 to 118 are presented and discussed. The calculated ground state properties like total binding energies, Q values, deformations, radii and densities closely agree with the corresponding experimental data, where available. The double folding (t-rho-rho) approximation is used to calculate the interaction potential between the daughter and the alpha, using RMF densities along with the density dependent nucleon - nucleon interaction (M3Y). This in turn, is employed within the WKB approximation to estimate the half lives without any additional parameter for alpha - decay. The half lives are highly sensitive to the Q values used and qualitatively agree with the corresponding experimental values. The use of experimental Q values in the WKB approximation improves the agreement with the experiment, indicating that the resulting interaction potential is reliable and can be used with confidence as the real part of the optical potential in other scattering and reaction processes.Comment: Accepted for publication in Annals of Physics (NY

    Alpha decay and proton-neutron correlations

    Full text link
    We study the influence of proton-neutron (p-n) correlations on alpha-decay width. It is shown from the analysis of alpha Q values that the p-n correlations increase the penetration of the alpha particle through the Coulomb barrier in the treatment following Gamow's formalism, and enlarges the total alpha-decay width significantly. In particular, the isoscalar p-n interactions play an essential role in enlarging the alpha-decay width. The so-called "alpha-condensate" in Z > 84 isotopes are related to the strong p-n correlations.Comment: 5 pages, 6 figures, accepted for publication in Phys. Rev. C (R.C.

    Superheavy Nuclei in the Relativistic Mean Field Theory

    Get PDF
    We have carried out a study of superheavy nuclei in the framework of the Relativistic Mean-Field theory. Relativistic Hartree-Bogoliubov (RHB) calculations have been performed for nuclei with large proton and neutron numbers. A finite-range pairing force of Gogny type has been used in the RHB calculations. The ground-state properties of very heavy nuclei with atomic numbers Z=100-114 and neutron numbers N=154-190 have been obtained. The results show that in addition to N=184 the neutron numbers N=160 and N=166 exhibit an extra stability as compared to their neighbors. For the case of protons the atomic number Z=106 is shown to demonstrate a closed-shell behavior in the region of well deformed nuclei about N=160. The proton number Z=114 also indicates a shell closure. Indications for a doubly magic character at Z=106 and N=160 are observed. Implications of shell closures on a possible synthesis of superheavy nuclei are discussed.Comment: 29 pages Latex, 13 ps figures, to appear in Nucl. Phys.

    Identical Bands in Superdeformed Nuclei: A Relativistic Description

    Full text link
    Relativistic Mean Field Theory in the rotating frame is used to describe superdeformed nuclei. Nuclear currents and the resulting spatial components of the vector meson fields are fully taken into account. Identical bands in neighboring Rare Earth nuclei are investigated and excellent agreement with recent experimental data is observed.Comment: 11 pages (Latex) and 4 figures (available upon request) TUM-ITP-Ko93/

    Relativistic Hartree-Bogoliubov Approach for Nuclear Matter with Non-Linear Coupling Terms

    Get PDF
    We investigate the pairing property of nuclear matter with Relativistic Hartree-Bogoliubov(RHB) approach. Recently, the RHB approach has been widely applied to nuclear matter and finite nuclei. We have extended the RHB approach to be able to include non-linear coupling terms of mesons. In this paper we apply it to nuclear matter and observe the effect of non-linear terms on pairing gaps.Comment: 13 pages, 5 figure

    The structure of superheavy elements newly discovered in the reaction of 86^{86}Kr with 208^{208}Pb

    Get PDF
    The structure of superheavy elements newly discovered in the 208^{208}Pb(86^{86}Kr,n) reaction at Berkeley is systematically studied in the Relativistic Mean Field (RMF) approach. It is shown that various usually employed RMF forces, which give fair description of normal stable nuclei, give quite different predictions for superheavy elements. Among the effective forces we tested, TM1 is found to be the good candidate to describe superheavy elements. The binding energies of the 293^{293}118 nucleus and its α\alpha-decay daughter nuclei obtained using TM1 agree with those of FRDM within 2 MeV. Similar conclusion that TM1 is the good interaction is also drawn from the calculated binding energies for Pb isotopes with the Relativistic Continuum Hartree Bogoliubov (RCHB) theory. Using the pairing gaps obtained from RCHB, RMF calculations with pairing and deformation are carried out for the structure of superheavy elements. The binding energy, shape, single particle levels, and the Q values of the α\alpha-decay QαQ_{\alpha} are discussed, and it is shown that both pairing correlation and deformation are essential to properly understand the structure of superheavy elements. A good agreement is obtained with experimental data on QαQ_{\alpha}. %Especially, the atomic number %dependence of QαQ_{\alpha} %seems to match with the experimental observationComment: 19 pages, 5 figure

    Anatomy of nuclear shape transition in the relativistic mean field theory

    Get PDF
    A detailed microscopic study of the temperature dependence of the shapes of some rare-earth nuclei is made in the relativistic mean field theory. Analyses of the thermal evolution of the single-particle orbitals and their occupancies leading to the collapse of the deformation are presented. The role of the non-linear σ\sigma-field on the shape transition in different nuclei is also investigated; in its absence the shape transition is found to be sharper.Comment: REVTEX file (13pages), 12 figures, Phys. Rev. C(in press), \documentstyle[aps,preprint]{revtex

    Generator Coordinate Truncations

    Get PDF
    We investigate the accuracy of several schemes to calculate ground-state correlation energies using the generator coordinate technique. Our test-bed for the study is the sdsd interacting boson model, equivalent to a 6-level Lipkin-type model. We find that the simplified projection of a triaxial generator coordinate state using the S3S_3 subgroup of the rotation group is not very accurate in the parameter space of the Hamiltonian of interest. On the other hand, a full rotational projection of an axial generator coordinate state gives remarkable accuracy. We also discuss the validity of the simplified treatment using the extended Gaussian overlap approximation (top-GOA), and show that it works reasonably well when the number of boson is four or larger.Comment: 19 pages, 6 eps figure
    corecore