81 research outputs found

    Differential progression of coronary atherosclerosis according to plaque composition: a cluster analysis of PARADIGM registry data

    Get PDF
    Patient-specific phenotyping of coronary atherosclerosis would facilitate personalized risk assessment and preventive treatment. We explored whether unsupervised cluster analysis can categorize patients with coronary atherosclerosis according to their plaque composition, and determined how these differing plaque composition profiles impact plaque progression. Patients with coronary atherosclerotic plaque (n = 947; median age, 62 years; 59% male) were enrolled from a prospective multi-national registry of consecutive patients who underwent serial coronary computed tomography angiography (median inter-scan duration, 3.3 years). K-means clustering applied to the percent volume of each plaque component and identified 4 clusters of patients with distinct plaque composition. Cluster 1 (n = 52), which comprised mainly fibro-fatty plaque with a significant necrotic core (median, 55.7% and 16.0% of the total plaque volume, respectively), showed the least total plaque volume (PV) progression (+ 23.3 mm(3)), with necrotic core and fibro-fatty PV regression (- 5.7 mm(3) and - 5.6 mm(3), respectively). Cluster 2 (n = 219), which contained largely fibro-fatty (39.2%) and fibrous plaque (46.8%), showed fibro-fatty PV regression (- 2.4 mm(3)). Cluster 3 (n = 376), which comprised mostly fibrous (62.7%) and calcified plaque (23.6%), showed increasingly prominent calcified PV progression (+ 21.4 mm(3)). Cluster 4 (n = 300), which comprised mostly calcified plaque (58.7%), demonstrated the greatest total PV increase (+ 50.7mm(3)), predominantly increasing in calcified PV (+ 35.9 mm(3)). Multivariable analysis showed higher risk for plaque progression in Clusters 3 and 4, and higher risk for adverse cardiac events in Clusters 2, 3, and 4 compared to that in Cluster 1. Unsupervised clustering algorithms may uniquely characterize patient phenotypes with varied atherosclerotic plaque profiles, yielding distinct patterns of progressive disease and outcome.Cardiolog

    Plaque character and progression according to the location of coronary atherosclerotic plaque

    Get PDF
    Although acute coronary syndrome culprit lesions occur more frequently in the proximal coronary artery, whether the proximal clustering of high-risk plaque is reflected in earlier-stage atherosclerosis remains unclarified. We evaluated the longitudinal distribution of stable atherosclerotic lesions on coronary computed tomography angiography (CCTA) in 1,478 patients (mean age, 61 years; men, 58%) enrolled from a prospective multinational registry of consecutive patients undergoing serial CCTA. Of 3,202 coronary artery lesions identified, 2,140 left lesions were classified (based on the minimal lumen diameter location) into left main (LM, n = 128), proximal (n = 739), and other (n = 1,273), and 1,062 right lesions were classified into proximal (n = 355) and other (n = 707). Plaque volume (PV) was the highest in proximal lesions (median, 26.1 mm3), followed by LM (20.6 mm3) and other lesions (15.0 mm3, p 3) than in other lesions (15.2 mm3, p </p

    Vessel-specific plaque features on coronary computed tomography angiography among patients of varying atherosclerotic cardiovascular disease risk

    Get PDF
    Aims: The relationship between AtheroSclerotic CardioVascular Disease (ASCVD) risk and vessel-specific plaque evaluation using coronary computed tomography angiography (CCTA), focusing on plaque extent and composition, has not been examined. To evaluate differences in quantified plaque characteristics (using CCTA) between the three major coronary arteries [left anterior descending (LAD), right coronary (RCA), and left circumflex (LCx)] among subgroups of patients with varying ASCVD risk.Methods and results: Patients were included from a prospective, international registry of consecutive patients who underwent CCTA for evaluation of coronary artery disease. ASCVD risk groups were Conclusion: Among patients with varying risk of ASCVD, plaque in the LCx is decidedly less and is comprised of less non-calcified plaque supporting prior evidence of the lower rates of acute coronary events in this vessel.Cardiolog

    Precise measurements of W- and Z-boson transverse momentum spectra with the ATLAS detector using pp collisions at t √s = 5.02 TeV and 13 TeV

    Get PDF

    Measurements of the production cross-section for a Z boson in association with b- or c-jets in proton–proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the production cross-section of a Z boson in association with bor c-jets, in proton–proton collisions at √s = 13 TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb−1. Inclusive and differential cross-sections are measured for events containing a Z boson decaying into electrons or muons and produced in association with at least one b-jet, at least one c-jet, or at least two b-jets with transverse momentum pT > 20 GeV and rapidity |y| < 2.5. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected Z+ ≥ 1 c-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions

    Software performance of the ATLAS track reconstruction for LHC run 3

    Get PDF
    Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pileup) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60 pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two
    corecore