8 research outputs found

    International nosocomial infection control consortium (INICC) report, data summary of 36 countries, for 2004-2009

    Get PDF
    The results of a surveillance study conducted by the International Nosocomial Infection Control Consortium (INICC) from January 2004 through December 2009 in 422 intensive care units (ICUs) of 36 countries in Latin America, Asia, Africa, and Europe are reported. During the 6-year study period, using Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN; formerly the National Nosocomial Infection Surveillance system [NNIS]) definitions for device-associated health care-associated infections, we gathered prospective data from 313,008 patients hospitalized in the consortium's ICUs for an aggregate of 2,194,897 ICU bed-days. Despite the fact that the use of devices in the developing countries' ICUs was remarkably similar to that reported in US ICUs in the CDC's NHSN, rates of device-associated nosocomial infection were significantly higher in the ICUs of the INICC hospitals; the pooled rate of central line-associated bloodstream infection in the INICC ICUs of 6.8 per 1,000 central line-days was more than 3-fold higher than the 2.0 per 1,000 central line-days reported in comparable US ICUs. The overall rate of ventilator-associated pneumonia also was far higher (15.8 vs 3.3 per 1,000 ventilator-days), as was the rate of catheter-associated urinary tract infection (6.3 vs. 3.3 per 1,000 catheter-days). Notably, the frequencies of resistance of Pseudomonas aeruginosa isolates to imipenem (47.2% vs 23.0%), Klebsiella pneumoniae isolates to ceftazidime (76.3% vs 27.1%), Escherichia coli isolates to ceftazidime (66.7% vs 8.1%), Staphylococcus aureus isolates to methicillin (84.4% vs 56.8%), were also higher in the consortium's ICUs, and the crude unadjusted excess mortalities of device-related infections ranged from 7.3% (for catheter-associated urinary tract infection) to 15.2% (for ventilator-associated pneumonia). Copyright © 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved

    Future circular collider based lepton-hadron and photon-hadron colliders: Luminosity and physics

    No full text
    Kaya, Umit/0000-0003-0823-3848WOS: 000410699700008Construction of future electron-positron colliders (or dedicated electron linac) and muon colliders (or dedicated muon ring) tangential to Future Circular Collider (FCC) will give opportunity to utilize highest energy proton and nucleus beams for lepton-hadron and photon-hadron collisions. Luminosity values of FCC based ep, mu p, eA, mu A, gamma p and gamma A colliders are estimated. Multi-TeV center of mass energy.... colliders based on the FCC and linear colliders (LC) are considered in detail. Parameters of upgraded versions of the FCC proton beam are determined to optimize luminosity of electron-proton collisions keeping beam-beam effects in mind. Numerical calculations are performed using a currently being developed collision point simulator. It is shown that L-ep greater than or similar to 10(33) cm(-2) s(-1) can be achieved with LHeC-like upgrade of the FCC parameters. Moreover, "dynamic focusing'' scheme could provide opportunity to handle L-ep greater than or similar to 10(33) cm(-2) s(-1). (C) 2017 Elsevier B.V. All rights reserved.TUBITAKTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [114F337]This study is supported by TUBITAK under the Grant No 114F337. A. Akay and S. Sultansoy are grateful to organizers of the FCC Week 2016 for giving opportunity to present our results at this distinguished conference

    Timing Performance of the CMS High Granularity Calorimeter Prototype

    No full text
    International audienceThis paper describes the experience with the calibration, reconstruction and evaluation of the timing capabilities of the CMS HGCAL prototype in the beam tests in 2018. The calibration procedure includes multiple steps and corrections ranging from tens of nanoseconds to a few hundred picoseconds. The timing performance is studied using signals from positron beam particles with energies between 20 GeV and 300 GeV. The performance is studied as a function of particle energy against an external timing reference as well as standalone by comparing the two different halves of the prototype. The timing resolution is found to be 60 ps for single-channel measurements and better than 20 ps for full showers at the highest energies, setting excellent perspectives for the HGCAL calorimeter performance at the HL-LHC

    Timing Performance of the CMS High Granularity Calorimeter Prototype

    No full text
    International audienceThis paper describes the experience with the calibration, reconstruction and evaluation of the timing capabilities of the CMS HGCAL prototype in the beam tests in 2018. The calibration procedure includes multiple steps and corrections ranging from tens of nanoseconds to a few hundred picoseconds. The timing performance is studied using signals from positron beam particles with energies between 20 GeV and 300 GeV. The performance is studied as a function of particle energy against an external timing reference as well as standalone by comparing the two different halves of the prototype. The timing resolution is found to be 60 ps for single-channel measurements and better than 20 ps for full showers at the highest energies, setting excellent perspectives for the HGCAL calorimeter performance at the HL-LHC

    Timing Performance of the CMS High Granularity Calorimeter Prototype

    No full text
    International audienceThis paper describes the experience with the calibration, reconstruction and evaluation of the timing capabilities of the CMS HGCAL prototype in the beam tests in 2018. The calibration procedure includes multiple steps and corrections ranging from tens of nanoseconds to a few hundred picoseconds. The timing performance is studied using signals from positron beam particles with energies between 20 GeV and 300 GeV. The performance is studied as a function of particle energy against an external timing reference as well as standalone by comparing the two different halves of the prototype. The timing resolution is found to be 60 ps for single-channel measurements and better than 20 ps for full showers at the highest energies, setting excellent perspectives for the HGCAL calorimeter performance at the HL-LHC
    corecore