1,307 research outputs found

    Discovery From Non-Parties (Third-Party Discovery) in International Arbitration

    Get PDF
    International arbitration rules and many arbitration laws usually provide procedures that permit tribunals to order parties to disclose documents and other materials to the other parties.1 More complex are the rules that determine opportunities to obtain discovery from persons that are not party to the arbitration (third-party discovery). This article will review third-party discovery under the Federal Arbitration Act (FAA) and the provisions of the US Code s.1782 that authorise US courts to act in aid of actions before foreign tribunals. Section 1782 has unique interest at this time because it figured prominently in the EU antitrust investigation of Intel that was initiated on request from Advanced Micro Devices (AMD). Early in that investigation, AMD filed a s.1782 request in the US District Court to obtain evidence from US sources for submission to the DG-Competition of the European Commission (EC). This request ultimately led to the Supreme Court’s decision in Intel Corp v Advanced Micro Devices Inc2 which appeared to significantly expand the scope of s.1782. Ironically, after AMD won on key legal issues in the Supreme Court, the District Court on remand exercised its discretion and denied the request for judicial assistance. This paper first describes the FAA non-party discovery rules and the split among the federal appellate courts concerning the authority of arbitrators to order prehearing discovery from non-parties. Next, it provides an analysis of the meaning of the terms “interested party” and “tribunal”—terms that were controversially interpreted by the Supreme Court in Intel and are essential to the application of s.1782. Finally, it discusses the “discretionary” factors used by the federal courts in deciding whether to grant a s.1782 request even when the statutory criteria are met. The opportunity to exercise this discretion seems to rebut the argument that the Supreme Court’s interpretation of s.1782 gives participants before foreign tribunals more discovery rights in the United States than are available to the parties in arbitrations covered by the FAA

    Lazaroid U-74500A for warm ischemia and reperfusion injury of the canine small intestine

    Get PDF
    BACKGROUND: Although lazaroids have been shown to protect various organs from ischemia/reperfusion injury, results obtained in the small intestine have been conflicting. STUDY DESIGN: The canine small intestine was made totally ischemic for 2 hours by occluding the superior mesenteric artery and the superior mesenteric vein with interruption of the mesenteric collateral vessels. A lazaroid compound, U74500A, or a citrate vehicle was given intravenously to each of the six animals for 30 minutes before intestinal ischemia. Intestinal tissue blood flow, lipid peroxidation, neutrophil infiltration, adenine nucleotides and their catabolites, and histologic changes after reperfusion were determined. RESULTS: Lazaroid treatment attenuated decline of the mucosal and serosal blood flow after reperfusion. Accumulation of lipid peroxidation products and neutrophils in mucosal tissues was markedly inhibited by the treatment. Postischemic energy resynthesis was also augmented by lazaroid. Morphologically, mucosal architectures were better preserved with lazaroid treatment after reperfusion, and recovered to normal by postoperative day 3 in the treated group and by post-operative day 7 in control animals. CONCLUSIONS: Lazaroids protect the canine small intestine from ischemia/reperfusion injury by inhibiting lipid peroxidation and neutrophil infiltration. Dogs are tolerant of 2-hour normothermic complete intestinal ischemia

    Model pruning enables efficient federated learning on edge devices

    Get PDF
    Federated learning (FL) allows model training from local data collected by edge/mobile devices while preserving data privacy, which has wide applicability to image and vision applications. A challenge is that client devices in FL usually have much more limited computation and communication resources compared to servers in a data center. To overcome this challenge, we propose PruneFL--a novel FL approach with adaptive and distributed parameter pruning, which adapts the model size during FL to reduce both communication and computation overhead and minimize the overall training time, while maintaining a similar accuracy as the original model. PruneFL includes initial pruning at a selected client and further pruning as part of the FL process. The model size is adapted during this process, which includes maximizing the approximate empirical risk reduction divided by the time of one FL round. Our experiments with various datasets on edge devices (e.g., Raspberry Pi) show that: 1) we significantly reduce the training time compared to conventional FL and various other pruning-based methods and 2) the pruned model with automatically determined size converges to an accuracy that is very similar to the original model, and it is also a lottery ticket of the original model

    There is detectable variation in the lipidomic profile between stable and progressive patients with idiopathic pulmonary fibrosis (IPF)

    Get PDF
    Background Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterized by fibrosis and progressive loss of lung function. The pathophysiological pathways involved in IPF are not well understood. Abnormal lipid metabolism has been described in various other chronic lung diseases including asthma and chronic obstructive pulmonary disease (COPD). However, its potential role in IPF pathogenesis remains unclear. Methods In this study, we used ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) to characterize lipid changes in plasma derived from IPF patients with stable and progressive disease. We further applied a data-independent acquisition (DIA) technique called SONAR, to improve the specificity of lipid identification. Results Statistical modelling showed variable discrimination between the stable and progressive subjects, revealing differences in the detection of triglycerides (TG) and phosphatidylcholines (PC) between progressors and stable IPF groups, which was further confirmed by mass spectrometry imaging (MSI) in IPF tissue. Conclusion This is the first study to characterise lipid metabolism between stable and progressive IPF, with results suggesting disparities in the circulating lipidome with disease progression

    Intensity and Doppler velocity oscillations in pore atmospheres

    Get PDF
    We have investigated chromospheric traveling features running across two merged pores from their centers at speeds of about 55 km s−1, in the active region AR 11828. The pores were observed on 2013 August 24 by using high-time, spatial, and spectral resolution data from the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope. We infer a line-of-sight (LOS) velocity by applying the lambdameter method to the Ca ii 8542 Å band and Hα band, and investigate intensity and LOS velocity changes at different wavelengths and different positions at the pores. We find that they have three-minute oscillations, and the intensity oscillation from the line center (0.0 A\overset{\circ}{\rm A} ) is preceded by that from the core (−0.3 A\overset{\circ}{\rm A} ) of the bands. There is no phase difference between the intensity and the LOS velocity oscillations at a given wavelength. The amplitude of LOS velocity from the near core spectra (Δλ=0.100.21  A{\Delta }\lambda =0.10-0.21\;\overset{\circ}{\rm A} ) is greater than that from the far core spectra (Δλ=0.240.36  A{\Delta }\lambda =0.24-0.36\;\overset{\circ}{\rm A} ). These results support the interpretation of the observed wave as a slow magnetoacoustic wave propagating along the magnetic field lines in the pores. The apparent horizontal motion and a sudden decrease of its speed beyond the pores can be explained by the projection effect caused by inclination of the magnetic field with a canopy structure. We conclude that the observed wave properties of the pores are quite similar to those from the sunspot observations

    Evaluation of measurement accuracies of the Higgs boson branching fractions in the International Linear Collider

    Get PDF
    Precise measurement of Higgs boson couplings is an important task for International Linear Collider (ILC) experiments and will facilitate the understanding of the particle mass generation mechanism. In this study, the measurement accuracies of the Higgs boson branching fractions to the bb and cc quarks and gluons, ΔBr(Hbbˉ,ccˉ,gg)/Br\Delta Br(H\to b\bar{b},\sim c\bar{c},\sim gg)/Br, were evaluated with the full International Large Detector model (\texttt{ILD\_00}) for the Higgs mass of 120 GeV at the center-of-mass (CM) energies of 250 and 350 GeV using neutrino, hadronic and leptonic channels and assuming an integrated luminosity of 250fb1250 {\rm fb^{-1}}, and an electron (positron) beam polarization of -80% (+30%). We obtained the following measurement accuracies of the Higgs cross section times branching fraction (Δ(σBr)/σBr\Delta (\sigma \cdot Br)/\sigma \cdot Br) for decay of the Higgs into bbˉb\bar{b}, ccˉc\bar{c}, and gggg; as 1.0%, 6.9%, and 8.5% at a CM energy of 250 GeV and 1.0%, 6.2%, and 7.3% at 350 GeV, respectively. After the measurement accuracy of the cross section (Δσ/σ\Delta\sigma/\sigma) was corrected using the results of studies at 250 GeV and their extrapolation to 350 GeV, the derived measurement accuracies of the branching fractions (ΔBr/Br\Delta Br/Br) to bbˉb\bar{b}, ccˉc\bar{c}, and gg were 2.7%, 7.3%, and 8.9% at a CM energy of 250 GeV and 3.6%, 7.2%, and 8.1% at 350 GeV, respectively.Comment: 15 pages, 6 figure
    corecore