73,033 research outputs found

    An experimental study on a motion sensing system for sports training

    Get PDF
    In sports science, motion data collected from athletes is used to derive key performance characteristics, such as stride length and stride frequency, that are vital coaching support information. The sensors for use must be more accurate, must capture more vigorous events, and have strict weight and size requirements, since they must not themselves affect performance. These requirements mean each wireless sensor device is necessarily resource poor and yet must be capable of communicating a considerable amount of data, contending for the bandwidth with other sensors on the body. This paper analyses the results of a set of network traffic experiments that were designed to investigate the suitability of conventional wireless motion sensing system design � which generally assumes in-network processing - as an efficient and scalable design for use in sports training

    Compressing Inertial Motion Data in Wireless Sensing Systems – An Initial Experiment

    Get PDF
    The use of wireless inertial motion sensors, such as accelerometers, for supporting medical care and sport’s training, has been under investigation in recent years. As the number of sensors (or their sampling rates) increases, compressing data at source(s) (i.e. at the sensors), i.e. reducing the quantity of data that needs to be transmitted between the on-body sensors and the remote repository, would be essential especially in a bandwidth-limited wireless environment. This paper presents a set of compression experiment results on a set of inertial motion data collected during running exercises. As a starting point, we selected a set of common compression algorithms to experiment with. Our results show that, conventional lossy compression algorithms would achieve a desirable compression ratio with an acceptable time delay. The results also show that the quality of the decompressed data is within acceptable range

    Implications of Recent Bˉ0D()0X0\bar{B}^0\to D^{(*)0}X^0 Measurements

    Full text link
    The recent measurements of the color-suppressed modes Bˉ0D()0π0\bar B^0\to D^{(*)0}\pi^0 imply non-vanishing relative final-state interaction (FSI) phases among various BˉDπ\bar B\to D\pi decay amplitudes. Depending on whether or not FSIs are implemented in the topological quark-diagram amplitudes, two solutions for the parameters a1a_1 and a2a_2 are extracted from data using various form-factor models. It is found that a2a_2 is not universal: a2(Dπ)=0.400.55|a_2(D\pi)|= 0.40-0.55 and a2(Dπ)=0.250.35|a_2(D^*\pi)|= 0.25-0.35 with a relative phase of order (5055)(50-55)^\circ between a1a_1 and a2a_2. If FSIs are not included in quark-diagram amplitudes from the outset, a2eff/a1effa_2^{eff}/a_1^{eff} and a2effa_2^{eff} will become smaller. The large value of a2(Dπ)|a_2(D\pi)| compared to a2eff(Dπ)|a_2^{eff}(D\pi)| or naive expectation implies the importance of long-distance FSI contributions to color-suppressed internal WW-emission via final-state rescatterings of the color-allowed tree amplitude.Comment: 17 pages. The Introduction is substantially revised and the order of the presentation in Sec. 2 is rearranged. To appear in Phys. Re

    Dominant moving species in the formation of amorphous NiZr by solid-state reaction

    Get PDF
    The displacements of W and Hf markers have been monitored by backscattering of MeV He to study the growth of the amorphous NiZr phase by solid-state reaction. We find that the Ni is the dominant moving species in this reaction

    Quasiparticle Interference on the Surface of the Topological Insulator Bi2_2Te3_3

    Full text link
    The quasiparticle interference of the spectroscopic imaging scanning tunneling microscopy has been investigated for the surface states of the large gap topological insulator Bi2_2Te3_3 through the T-matrix formalism. Both the scalar potential scattering and the spin-orbit scattering on the warped hexagonal isoenergy contour are considered. While backscatterings are forbidden by time-reversal symmetry, other scatterings are allowed and exhibit strong dependence on the spin configurations of the eigenfunctions at k points over the isoenergy contour. The characteristic scattering wavevectors found in our analysis agree well with recent experiment results.Comment: 5 pages, 2 figures, Some typos are correcte
    corecore