34,967 research outputs found

    Experimental probing of the anisotropy of the empty p states near the Fermi level in MgB2

    Full text link
    We have studied the Boron K-edge in the superconductor MgB2 by electron energy loss spectroscopy (EELS) and experimentally resolved the empty p states at the Fermi level that have previously been observed within an energy window of 0.8eV by soft x-ray absorption spectroscopy. Using angular resolved EELS, we find that these states at the immediate edge onset have pxy character in agreement with predictions from first-principle electronic structure calculations.Comment: 15 pages, 5 figure

    Torque magnetometry on single-crystal high temperature superconductors near the critical temperature: a scaling approach

    Full text link
    Angular-dependent magnetic torque measurements performed near the critical temperature on single crystals of HgBa_{2}CuO_{4+y}, La_{2-x}Sr{x}CuO_{4}, and YBa_{2}Cu_{3}O_{6.93} are scaled, following the 3D XY model, in order to determine the scaling function dG^{\pm}(z)/dz which describes the universal critical properties near T_{c}. A systematic shift of the scaling function with increasing effective mass anisotropy \gamma = (m_{ab}*/m_{c}*)^{1/2} is observed, which may be understood in terms of a 3D-2D crossover. Further evidence for a 3D-2D crossover is found from temperature-dependent torque measurements carried out in different magnetic fields at different field orientations \delta, which show a quasi 2D "crossing region'' (M*,T*). The occurrence of this "crossing phenomenon'' is explained in a phenomenological way from the weak z dependence of the scaling function around a value z = z*. The "crossing'' temperature T* is found to be angular-dependent. Torque measurements above T_{c} reveal that fluctuations are strongly enhanced in the underdoped regime where the anisotropy is large, whereas they are less important in the overdoped regime.Comment: 9 pages, 10 figures, submitted to PR

    Beeping a Maximal Independent Set

    Full text link
    We consider the problem of computing a maximal independent set (MIS) in an extremely harsh broadcast model that relies only on carrier sensing. The model consists of an anonymous broadcast network in which nodes have no knowledge about the topology of the network or even an upper bound on its size. Furthermore, it is assumed that an adversary chooses at which time slot each node wakes up. At each time slot a node can either beep, that is, emit a signal, or be silent. At a particular time slot, beeping nodes receive no feedback, while silent nodes can only differentiate between none of its neighbors beeping, or at least one of its neighbors beeping. We start by proving a lower bound that shows that in this model, it is not possible to locally converge to an MIS in sub-polynomial time. We then study four different relaxations of the model which allow us to circumvent the lower bound and find an MIS in polylogarithmic time. First, we show that if a polynomial upper bound on the network size is known, it is possible to find an MIS in O(log^3 n) time. Second, if we assume sleeping nodes are awoken by neighboring beeps, then we can also find an MIS in O(log^3 n) time. Third, if in addition to this wakeup assumption we allow sender-side collision detection, that is, beeping nodes can distinguish whether at least one neighboring node is beeping concurrently or not, we can find an MIS in O(log^2 n) time. Finally, if instead we endow nodes with synchronous clocks, it is also possible to find an MIS in O(log^2 n) time.Comment: arXiv admin note: substantial text overlap with arXiv:1108.192

    Mass-detection of a matter concentration projected near the cluster Abell 1942: Dark clump or high-redshift cluster?

    Get PDF
    A weak-lensing analysis of wide-field VV- and II-band images centered on the cluster Abell 1942 has uncovered a mass concentration 7\sim 7 arcminutes South of the cluster center. A statistical analysis shows that the detections are highly significant. No strong concentration of bright galaxies is seen at the position of the mass concentration, though a slight galaxy number overdensity and a weak extended X-ray source are present about 1' away from its center. From the spatial dependence of the tangential alignment around the center of the mass concentration, we inferred a lower bound on the mass inside a sphere of radius 0.5h10.5 h^{-1}\ts Mpc of 1×1014h1M1\times 10^{14}h^{-1}M_\odot, much higher than crude mass estimates based on X-ray data. No firm conclusion can be inferred about the nature of the clump. If it were a high-redshift cluster, the weak X-ray flux would indicate that it had an untypically low X-ray luminosity for its mass; if the X-ray emission were physically unrelated to the mass concentration, this conclusion would be even stronger. The search for massive halos by weak lensing enables us for the first time to select halos based on their mass properties only and to detect new types of objects, e.g., dark halos. The mass concentration in the field of A1942 may be the first example of such a halo.Comment: Sumitted to A&A Main Journal. 15 pages, 11 figures. 75 Kb gzipped tar file. Figures with images not included, but available on ftp.iap.fr /pub/from_users/mellier/A1942: a1942darkclump.ps.gz (2.1 Mb

    Computing in Additive Networks with Bounded-Information Codes

    Full text link
    This paper studies the theory of the additive wireless network model, in which the received signal is abstracted as an addition of the transmitted signals. Our central observation is that the crucial challenge for computing in this model is not high contention, as assumed previously, but rather guaranteeing a bounded amount of \emph{information} in each neighborhood per round, a property that we show is achievable using a new random coding technique. Technically, we provide efficient algorithms for fundamental distributed tasks in additive networks, such as solving various symmetry breaking problems, approximating network parameters, and solving an \emph{asymmetry revealing} problem such as computing a maximal input. The key method used is a novel random coding technique that allows a node to successfully decode the received information, as long as it does not contain too many distinct values. We then design our algorithms to produce a limited amount of information in each neighborhood in order to leverage our enriched toolbox for computing in additive networks

    Verifying Policy Enforcers

    Get PDF
    Policy enforcers are sophisticated runtime components that can prevent failures by enforcing the correct behavior of the software. While a single enforcer can be easily designed focusing only on the behavior of the application that must be monitored, the effect of multiple enforcers that enforce different policies might be hard to predict. So far, mechanisms to resolve interferences between enforcers have been based on priority mechanisms and heuristics. Although these methods provide a mechanism to take decisions when multiple enforcers try to affect the execution at a same time, they do not guarantee the lack of interference on the global behavior of the system. In this paper we present a verification strategy that can be exploited to discover interferences between sets of enforcers and thus safely identify a-priori the enforcers that can co-exist at run-time. In our evaluation, we experimented our verification method with several policy enforcers for Android and discovered some incompatibilities.Comment: Oliviero Riganelli, Daniela Micucci, Leonardo Mariani, and Yli\`es Falcone. Verifying Policy Enforcers. Proceedings of 17th International Conference on Runtime Verification (RV), 2017. (to appear

    Probing superconductivity in MgB2 confined to magnetic field tuned cylinders by means of critical fluctuations

    Full text link
    We report and analyze reversible magnetization measurements on a high quality MgB2 single crystal in the vicinity of the zero field transition temperature, T_c=38.83 K, at several magnetic fields up to 300 Oe, applied along the c-axis. Though MgB2 is a two gap superconductor our scaling analysis uncovers remarkable consistency with 3D-xy critical behavior, revealing that close to criticality the order parameter is a single complex scalar as in 4He. This opens up the window onto the exploration of the magnetic field induced finite size effect, whereupon the correlation length transverse to the applied magnetic field H_i applied along the i-axis cannot grow beyond the limiting magnetic length L_Hi, related to the average distance between vortex lines. We find unambiguous evidence for this finite size effect. It implies that in type II superconductors, such as MgB2, there is the 3D to 1D crossover line H_pi and xi denotes the critical amplitudes of the correlation lengths above and below T_c along the respective axis. Consequently, above H_pi(T) and T<T_c superconductivity is confined to cylinders with diameter L_Hi (1D). In contrast, above T_c the uncondensed pairs are confined to cylinders. Accordingly, there is no continuous phase transition in the (H,T)-plane along the H_c2-lines as predicted by the mean-field treatment
    corecore