103,072 research outputs found

    LittleDarwin: a Feature-Rich and Extensible Mutation Testing Framework for Large and Complex Java Systems

    Full text link
    Mutation testing is a well-studied method for increasing the quality of a test suite. We designed LittleDarwin as a mutation testing framework able to cope with large and complex Java software systems, while still being easily extensible with new experimental components. LittleDarwin addresses two existing problems in the domain of mutation testing: having a tool able to work within an industrial setting, and yet, be open to extension for cutting edge techniques provided by academia. LittleDarwin already offers higher-order mutation, null type mutants, mutant sampling, manual mutation, and mutant subsumption analysis. There is no tool today available with all these features that is able to work with typical industrial software systems.Comment: Pre-proceedings of the 7th IPM International Conference on Fundamentals of Software Engineerin

    "Women Are Better Than Men" - Public Beliefs on Gender Differences and Other Aspects in Multitasking.

    Get PDF
    Reports in public media suggest the existence of a stereotype that women are better at multitasking than men. The present online survey aimed at supporting this incidental observation by empirical data. For this, 488 participants from various ethnic backgrounds (US, UK, Germany, the Netherlands, Turkey, and others) filled out a self-developed online-questionnaire. Results showed that overall more than 50% of the participants believed in gender differences in multitasking abilities. Of those who believed in gender differences, a majority of 80% believed that women were better at multitasking. The main reasons for this were believed to be an evolutionary advantage and more multitasking practice in women, mainly due to managing children and household and/or family and job. Findings were consistent across the different countries, thus supporting the existence of a widespread gender stereotype that women are better at multitasking than men. Further questionnaire results provided information about the participants' self-rated own multitasking abilities, and how they conceived multitasking activities such as childcare, phoning while driving, and office work

    Differential expression of placental glucocorticoid receptors and growth arrest-specific transcript 5 in term and preterm pregnancies: evidence for involvement of maternal stress.

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Pregnancy-specific stress predicts birth outcomes. We hypothesized that there is a maternal stress-GR interaction that can influence fetal birth weight. This study examined the relationship between mothers' stress and attitude towards their pregnancies, placental glucocorticoid receptors (GRs) and growth arrest-specific transcript 5 (GAS5) expression, and the status of GR polymorphism, with their infants' birth weights. GAS5 and GR α were the predominant transcripts in both term and preterm placentas, with GAS5 being primarily localized in the syncytiotrophoblasts. In an attempt to mimic moderate and high stress environment in vitro, BeWo and JEG-3 cytotrophoblast cell lines were treated with 10 nM-1000 nM cortisol. Only expression of GAS5 was significantly upregulated by cortisol in all treatments compared with basal levels, but none of the GRs changed expression significantly. In an attempt to assess a stress versus gene interaction, we studied four GR polymorphisms. In the homozygous group for Tth111I polymorphism, mothers with negative attitudes towards the pregnancy gave birth to infants with significantly lower birth weights compared to women with positive/neutral attitudes. None of the GR splice variants were associated with maternal stress. However, placental GAS5 levels were inversely correlated with maternal stress. This study points towards a potential gene-environment interaction that could be of predictive value for fetal weight.Brunel Open Access Publishing Fun

    Non-linear evolution of the tidal elliptical instability in gaseous planets and stars

    Get PDF
    Tidally distorted rotating stars and gaseous planets are subject to a well-known linear fluid instability – the elliptical instability. It has been proposed that this instability might drive enough energy dissipation to solve the long-standing problem of the origin of tidal dissipation in stars and planets. But the non-linear outcome of the elliptical instability has yet to be investigated in the parameter regime of interest, and the resulting turbulent energy dissipation has not yet been quantified. We do so by performing three-dimensional hydrodynamical simulations of a small patch of a tidally deformed fluid planet or star subject to the elliptical instability. We show that when the tidal deformation is weak, the non-linear outcome of the instability leads to the formation of long-lived columnar vortices aligned with the axis of rotation. These vortices shut off the elliptical instability, and the net result is insufficient energy dissipation to account for tidal dissipation. However, further work is required to account for effects neglected here, including magnetic fields, turbulent convection and realistic boundary conditions
    corecore