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Abstract 11 

The episodic transfer of sediment from source to sink is a fundamental 12 

process in fluvial systems that influences river morphology, aquatic and 13 

riparian ecosystems, and risk from a variety of associated natural hazards.  14 

The hierarchical structure of river networks has been identified as a key 15 

control on spatiotemporal patterns of sediment routing at the catchment-16 

scale, but very few studies have systematically explored this relationship.  17 

In this paper, we investigate the role that drainage network topology plays 18 

in modulating sediment flux and morphodynamic activity.  We simulate the 19 

geomorphological responses of four topologically distinct catchments from 20 

New Zealand’s South Island to sequences of flood events using a landscape 21 

evolution model.  Spatiotemporal variation in different types of 22 

geomorphological activity is assessed via a link-based framework, and 23 

potential interrelationships between within-network changes and discharge 24 

and sediment yield at the catchment outlets are explored to provide insights 25 

into relative levels of network connectivity.  We also investigate the 26 

occurrence of geomorphic ‘hotspots’ in relation to network topology, and 27 

their impact on the downstream transfer of sediment in different network 28 

‘types’.  Dissected networks were found to exhibit much greater 29 

spatiotemporal variability in geomorphological activity compared to narrow, 30 

elongated networks where change was concentrated in mainstem reaches.  31 

The frequency and significance of geomorphological hotspots are shown to 32 

vary between network types, with strong contrasts evident between 33 

dissected networks with steep topography and elongated networks with 34 

more gentle gradients.  Dissected networks exhibited mostly non-linear 35 

relationships between within-network geomorphological activity and outlet 36 

discharge and sediment yield.  However, moderate-strong linear 37 

relationships between these variables were observed in mainstem-38 

dominated networks, indicating much greater levels of connectivity across 39 

a range of flow conditions.  We discuss the implications of these findings 40 

on the transformation of environmental signals through fluvial systems with 41 

different topological structures, and the differential responses of 42 

catchments to disturbance events. 43 

 44 
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1.0 INTRODUCTION 48 

The episodic transfer of sediment from source to sink is a fundamental 49 

process in fluvial systems. Driven by water flow and controlled by the 50 

regional characteristics of climate, geology, tectonics and landscape 51 

history, the sediment regime significantly influences river morphology, 52 

water quality, responses to system disturbance, and the distribution of 53 

habitats (Schumm, 1977; Brierley and Fryirs, 2005; Burt and Alison, 2010).  54 

Sediment transport is consequently well researched across a variety of 55 

spatial and temporal scales, but the complexity of fluvial systems and a 56 

lack of efficient analytical tools have impeded a comprehensive 57 

understanding of catchment-scale sediment flux.  This complexity is largely 58 

driven by the highly nonlinear relationship that exists between sediment 59 

flux and water flow (Coulthard and Van De Wiel, 2007), in which the same 60 

volume of water flowing through a given reach can alternately generate 61 

erosion, deposition, or no response at all.  This lack of understanding is 62 

exacerbated at the catchment scale, which has traditionally been neglected 63 

in favour of reach and local scales which are more straightforward to study. 64 

 65 

Research into the downstream transfer of sediment has historically focused 66 

on the localised transport of grains and the movement of individual 67 

sediment pulses through a reach (e.g. Lisle et al., 2001; Sklar et al., 2009; 68 

James, 2010), particularly the relative significance of dispersion and 69 

translation processes (e.g. Meade, 1985; Knighton, 1989; Lisle et al., 70 

2001).  Other studies have explored the impact of intersecting tributaries 71 

or ‘tributary-trunk’ dynamics (e.g. Knighton, 1980; Rice, 1998), focusing 72 

on the impact of tributaries on the downstream trunk channel with regards 73 

to grain size characteristics and downstream fining (e.g. Church and 74 

Kellerhals, 1978; Knighton, 1980; Dawson, 1988; Rice and Church, 1998). 75 

Relatively few studies have attempted to develop these concepts at the 76 

catchment scale, with some exceptions exploring the catchment-scale 77 

distribution of significant confluences (Benda et al., 2004a; Benda, 2008; 78 

Rice, 2017), and the influence of network structure in modulating sediment 79 

waves (Benda et al., 2004b; Sklar et al., 2006, 2009; Gran and Czuba, 80 

2017). More recently, studies have explored the role of geomorphic 81 

‘hotspots’ as key nodes in the river network predisposed to changes in 82 

storage and geomorphic change (Czuba and Foufoula-Georgiou, 2014, 83 

2015; Walley et al., 2018).  Network topology emerges from this literature 84 

as a key element in organising catchment-scale sediment flux, but only the 85 

work of Walley et al. (2018) systematically compares how different network 86 

structures impact patterns of sediment routing, highlighting the role of 87 

regional characteristics in governing both network configuration and 88 

sediment flux.   89 

 90 

Analysing catchment-scale sediment transfer thus necessitates 91 

consideration of the underlying network topology, and the associated 92 

regional-scale processes.  Over much longer timescales, the same 93 

processes which control regional sediment transfer also determine the 94 
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topology of river networks at the catchment scale, such as the tectonic and 95 

climatic settings that establish topology during initial mountain building, 96 

and continue to evolve networks over time (Hovius et al., 1998; Castelltort 97 

et al., 2012; Viaplana-Muzas et al., 2015). This relationship between 98 

topology and regional processes is thus key to understanding catchment-99 

scale sediment flux; however, the complex relationships and the spatial and 100 

temporal scales over which these processes occur make them difficult to 101 

understand or quantify.  Previous approaches to catchment-scale analysis 102 

have employed the network structure as a tool to organise system 103 

complexity, most notably in the form of stream ordering frameworks (e.g. 104 

Horton, 1945; Strahler, 1957; Shreve, 1967) and their associated 105 

derivatives (e.g. Tokunaga, 1978; Benda et al., 2004b; Zanardo et al., 106 

2013; Heasley et al., 2019).  Walley et al. (2020) employ these metrics to 107 

classify 59 catchments in the South Island of New Zealand into five ‘types’, 108 

identifying a clear relationship between network topology and regional 109 

setting. 110 

 111 

The resulting network classifications are used in this study to investigate 112 

the role that drainage network topology plays in modulating the spatio-113 

temporal pattern of sediment transfer from source to sink.  While 114 

quantitative frameworks exist which utilise DEM and remote sensing-115 

derived indices to characterise catchment-scale sediment connectivity and 116 

landform evolution (e.g. Bracken et al., 2015; Brierley et al., 2006; 117 

Heckmann et al., 2018), a numerical modelling approach was deployed 118 

here to enable a greater degree of experimental control and exploration of 119 

effects over large spatio-temporal scales.  The CAESAR-Lisflood model was 120 

identified as a fit-for-purpose catchment-scale application, which simulates 121 

sediment transfer and morphodynamic adjustment in a computationally 122 

efficient manner, with a good degree of process replication.  The model is 123 

also capable of large-scale simulations over 100s-1000s of years and 100s 124 

of km2 (Coulthard et al., 2013), and given the difficulty of validating 125 

catchment-scale models with real-world data, CAESAR-Lisflood was 126 

additionally chosen as a well-known landscape evolution model (LEM) that 127 

is established in the literature (Coulthard et al., 2013; Hancock et al., 2015, 128 

2017; Coulthard and Skinner, 2016; Liu and Coulthard, 2017; Xie et al., 129 

2018).  We thus use CAESAR-Lisflood in this paper to examine the 130 

distribution and modulation of sediment movement through topologically 131 

distinct networks and establish whether there are key differences in the 132 

emergent sediment pathways. Potential inter-relationships between 133 

geomorphological activity within the different networks and discharge and 134 

sediment yield at their outlets are explored to provide further insight to 135 

network connectivity. We also investigate the occurrence of geomorphic 136 

‘hotspots’ in relation to network topology, and their impact on the 137 

downstream transfer of sediment in different network ‘types’. 138 

 139 

2. TOPOLOGICALLY DISTINCT NETWORK STRUCTURES  140 
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The network classifications identified by Walley et al. (2020) were used to 141 

select topologically representative catchments in which modelled spatio-142 

temporal patterns of sediment connectivity could be compared.  The five 143 

network ‘types’ are distinguished by catchment topography and network 144 

structure (Fig. 1), in which types A, B, D and E exhibit values along the 145 

extremities of each axis.  These groupings are characterised by distinct 146 

topological properties (Table 1), while the catchments in Type C reflect a 147 

mixture of topologies with elements from the other types. It was assumed 148 

that the greatest contrast in sediment routing patterns would occur 149 

between the outermost network ‘types’, and Type C was consequently 150 

removed from further analysis.  The representative networks from the 151 

remaining ‘types’ identified by Walley et al. (2020) were evaluated for this 152 

study, but the data necessary to parameterise the CAESAR-Lisflood model 153 

was only available in the Type A catchment.  The networks from the Type 154 

B, D and E clusters were thus replaced with those that fell closest to the 155 

centre of the cluster for which the necessary data was obtainable. 156 

 157 

 158 
 159 

Figure 1.  Simplified representation of AHC clusters, and summary characteristics of the 160 
principal components.  From Walley et al. (2020). 161 
  162 
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 163 
Table 1.  Parameter values summarised in each class identified by the AHC analysis.  164 
From Walley et al. (2020). 165 
 166 

Class 

Strahler 

Order (Ω) 

Median 

Network 

Branching 

(c) 

Width Ratio 
Elevation 

Ratio 

Drainage 

Density 

(km/km2) 

Confluence 

Angle (°) 

Mean 

A 6 Low 
Wide 

Headwaters 

Moderately 

Gentle 
Mid 72.6 

B 5 Low 

Wide 

Headwaters 

and Consistent 

Width 

Moderately 

Steep 
High 64.5 

C 5 Mid 

Wide 

Headwaters 

and Consistent 

Width 

Moderate Mid 72.0 

D 4 High 
Consistent 

Width 

Moderately 

Gentle 
Low 78.3 

E 4 High 
Consistent 

Width 
Steep High 66.1 

 167 

The four identified study catchments were evaluated in the same manner 168 

as Walley et al. (2020), to establish the internal characteristics of the 169 

catchment topography and network structure.  The Type A network was 170 

identified by Walley et al. (2020) as the Motueka River, which exhibits a 171 

dissected network structure, with wide headwaters narrowing towards the 172 

outlet (Fig. 2a & e).  The catchment is relatively large and contains 173 

symmetrical gentle-moderate slopes (Fig. 3a & e) which steepen towards 174 

the western boundary.  This network is similar in structure to the South 175 

Ashburton River which represents the Type B catchments, and also contains 176 

a branching, dissected network topology (Fig. 2a & b).   The South 177 

Ashburton catchment is smaller than the Motueka and does not extend 178 

upstream into the Southern Alps, so the topography exhibits gentle slopes 179 

and very wide valley floors (Figs. 2j, 3f).  Both catchments are relatively 180 

rounded in shape and neither exhibit a prominent mainstem, suggesting 181 

that patterns of sediment routing are likely to be dominated by geomorphic 182 

hotspots at key confluences (Benda et al., 2004b; Rice, 2017; Walley et 183 

al., 2018). 184 

 185 

The Waiau Toa/Clarence River represents the Type D catchments and is the 186 

largest of the four study networks.  In contrast to the Motueka and South 187 

Ashburton catchments, the Waiau Toa/Clarence River has an elongate 188 

shape and relatively consistent width (Fig. 2c & g), resulting in a prominent 189 

mainstem and increasing network symmetry in the headwaters (Fig. 3g).  190 
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The Waiau Toa/Clarence network is additionally characterised by drainage 191 

anomalies, including river bends of more than 90°, tributaries joining the 192 

network oriented in an upstream direction, and parts of the river which flow 193 

laterally across mountain ranges (Duvall et al., 2020).  These anomalies 194 

reflect the highly active tectonic landscape and indicate a history of river 195 

capture across the region.  The Waihao River, which represents the Type E 196 

catchments, contains two elongate subcatchments which exhibit the same 197 

narrow, mainstem-dominated structure as the Waiau Toa/Clarence network 198 

(Fig. 2d).  It does not exhibit the same tectonic influence, however, and 199 

has a gentler topography similar to the South Ashburton catchment.  The 200 

patterns of sediment routing are likely to be strongly influenced by the 201 

mainstem channels in these catchments, and exhibit geomorphic hotspots 202 

at the head of the mainstem reaches (Benda et al., 2004b; Rice, 2017; 203 

Walley et al., 2018). 204 

 205 

 206 
 207 
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Figure 2.  Internal catchment structure of the four study catchments.  (a-d) Network map 208 
indicating Strahler orders, (e-h) Width function, a normalised frequency distribution of 209 
travel distance to the outlet, and (i-l) Hypsometry function, a normalised frequency 210 
distribution of elevation.  Binning increments for the width and hypsometry functions were 211 
1/50 of maximum value. 212 
 213 

 214 
 215 
Figure 3.  Distribution of elevation and travel distance for (a-d) every point in the 216 
catchment binned in a bivariate frequency distribution, showing the relative density of 217 
cells.  (e-h) display the data from a-d as a catchment map.  The values of highest density 218 
occur where multiple points in the network exhibit the same values of both elevation and 219 
distance upstream of the outlet.  The colours are normalised on each set of figures. 220 
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 221 

3. THE CAESAR-LISFLOOD MODEL  222 

To explore patterns of sediment flux at the catchment scale, the four 223 

identified topologically dissimilar networks were simulated using the 224 

CAESAR-Lisflood LEM (Coulthard et al., 2000, 2002, 2005, 2013).  CAESAR-225 

Lisflood simulates landscape evolution by moving water over a DEM, and 226 

uses fluvial and slope processes to calculate erosion and deposition in each 227 

cell for each timestep (Coulthard et al., 2013).  In catchment-scale 228 

simulations a ‘real-time’ rainfall input is used to calculate runoff, which is 229 

routed using the LISFLOOD-FP 2D inertial flow model and used to calculate 230 

flow depth and velocity in each grid cell.  These are in turn used to calculate 231 

fluvial erosion and deposition in up to nine grainsize fractions, with a 232 

method of storing sub-surface sediment in layers allowing for vertical 233 

grainsize variability.  Slope processes additionally allow for the erosion of 234 

sediment into the fluvial system via soil creep and mass movements, the 235 

latter triggered when a critical slope threshold is exceeded.  A catchment-236 

scale simulation in CAESAR-Lisflood thus requires a DEM of the study 237 

catchment and a timeseries of hourly rainfall rates as the two primary 238 

inputs, which must be set up to maximise output detail, while also allowing 239 

for realistic model run times.  The resolution of the DEM determines the 240 

number of calculations required for each timestep and must be considered 241 

alongside the length of the rainfall input, as shorter simulations can be 242 

carried out at higher resolutions.  It is also necessary to identify the m 243 

value which controls the peak and duration of simulated hydrographs 244 

(Beven and Kirkby, 1979; Beven, 1997), which can be calibrated against 245 

hydrological gauge data. 246 

 247 

3.1 Parameterisation and Validation 248 

The surface DEM is one of the key components of the CAESAR-Lisflood 249 

model, and the balance between catchment size and grid resolution is a 250 

key consideration for parameterisation.  Rescaling each DEM to an 251 

appropriate cell size has significant implications for the simulations, as a 252 

linear increase in resolution results in an exponential increase in the 253 

number of grid cells and a greater than exponential increase in simulation 254 

time.  High resolutions can also cause steeper slopes between cells and 255 

thus greater potential for erosion and deposition.  Finding an appropriate 256 

resolution depends on the size of the study catchment, as CAESAR-Lisflood 257 

is best suited to applications with resolutions below 100 m and less than 258 

500,000 cells.  Surface data for the study catchments was therefore taken 259 

from a mosaicked 8m DEM (Geographx, 2012), and resampled to the 260 

smallest resolution which produced a DEM containing less than 250,000 261 

cells, or 500,000 cells where the smaller value was not possible (Table 2).  262 

An appropriate slope failure threshold was identified by running sensitivity 263 

tests in CAESAR-Lisflood for one simulation day, to identify the lowest value 264 

which would not produce widespread hillslope failure within the first few 265 

iterations.  Bedrock DEMs were produced by subtracting 1 m from the entire 266 

surface, which act to prevent excessive and unrealistic incision occurring in 267 
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steeper channel sections during simulations (Hancock et al., 2011). In the 268 

absence of spatial data on bedrock depth, an erodible layer of constant 269 

thickness was specified to ensure a significant reservoir of material was 270 

available for erosion and transport through the networks. 271 
 272 
Table 2.  Resolution and number of grid cells for each catchment DEM. 273 
 274 

Catchments Cell Size (m) Number of Cells 

Motueka River 96 457,452 

South Ashburton River 72 230,720 

Waiau Toa/Clarence River 120 481,600 

Waihao River 72 234,624 

 275 

The simulated grain size distribution is also a key consideration during 276 

parameterisation, as different fractions are transported over different 277 

scales through the network.  Complex relationships exist between grain size 278 

and the rate of entrainment and transport, deposition and layering within 279 

sediment stores, and bed armouring on the surface, which have significant 280 

implications for the spatio-temporal scales of sediment connectivity.  281 

Although CAESAR-Lisflood has the capacity to model multiple grain size 282 

fractions simultaneously, it cannot trace the spatio-temporal pathways of 283 

these fractions through the network in a single simulation, which would 284 

require individual simulations for each fraction with the assumption that 285 

transport is unaffected by grain size interaction.  In addition, catchment-286 

specific grain size distributions were not available in the necessary spatial 287 

or temporal resolutions in any of the study catchments.  The model was 288 

therefore run using a single representative grain size fraction in order to 289 

isolate the catchment-scale sediment pathways in each catchment, and 290 

directly compare these patterns between their topologically distinct 291 

structures.  Given the relatively steep, active nature of rivers in the South 292 

Island of New Zealand, sediment smaller than 2 mm was assumed to be 293 

fully transported in suspension and was subsequently excluded from this 294 

analysis.  Gravel bedload was assumed to be the dominant grain size in 295 

active transport.  Representative values were taken from the midpoint of 296 

common diameter ranges for fine, medium, and coarse gravel, and test 297 

simulations identified the fine gravel value of 5 mm to transport sufficient 298 

volumes within realistic simulation times. 299 

 300 

The final element of parameterising the CAESAR-Lisflood model is the 301 

hourly rainfall input, which is converted into discharge and routed through 302 

the channel network.  One of the primary parameters in the hydrological 303 

model is therefore the m value, the parameter which controls the 304 

magnitude and duration of the hydrograph for each rainfall event (Beven, 305 

1997).  This value can be calibrated from the master recession curve (MRC) 306 

of a hydrological gauge dataset from the catchment of interest (Lamb and 307 
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Beven, 1997).  Discharge timeseries were thus obtained from automatic 308 

gauging stations in each study catchment, and rainfall timeseries acquired 309 

from the closest rainfall gauge.  A continuous timeseries of discharge and 310 

rainfall was then generated by matching the dates from these datasets, and 311 

the m value calculated using the method of Lamb and Beven (1997).  312 

Appropriate recession curves were first manually identified from the 313 

discharge record as those with minimal recharge from rainfall events, and 314 

of at least 4 days duration (Fig. 4a).  Each curve was then shifted along an 315 

arbitrary timeline relative to the other recession curves until a good 316 

alignment was found (Fig. 4b), and the parameters of the MRC were 317 

calculated by visually calibrating the smoothed line of best fit (Fig. 4c).  A 318 

value for m was then estimated from the gradient of the relationship 319 

between discharge per unit area and relative storage deficit (Table 3), in 320 

which the latter was calculated by cumulatively summing discharge per unit 321 

time with the deficit at peak discharge assumed to be zero (Lamb and 322 

Beven, 1997). 323 
 324 

 325 
 326 
Figure 4.  Method of calculating the Master Recession Curve (MRC).  (a) Recession curves 327 
are manually selected from the discharge record, then (b) the recession curves are aligned 328 
along an arbitrary timeline, and (c) the MRC parameters are calculated from a line of best 329 
fit. 330 
 331 
Table 3.  m values for each catchment. 332 
 333 

Catchments m Value  

Type A 0.028  

Type B 0.024  

Type D 0.019  

Type E 0.027  

 334 

The calibrated m values were validated by running CAESAR-Lisflood on 335 

each catchment and comparing the discharge output to the gauge data.  336 

The input DEM was clipped to the location of the gauge within the 337 

catchment and the model run using the rainfall records of matched dates.  338 

The simulation discharge records fell within the same order of magnitude 339 

as those measured at the associated gauge, and the distribution of peak 340 
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discharge values (including outliers) indicates a similar range of values 341 

encompassed by each pair of hydrographs (Fig. 5).  The distributions 342 

measured at the gauges are skewed further to the left than the modelled 343 

values, as variations in low flows were lost in CAESAR-Lisflood as the model 344 

was parameterised to skip flow and sediment transport calculations below 345 

the entrainment threshold. 346 

 347 

The hourly rainfall records input to the final model simulations were 348 

additionally benchmarked to ensure that the number of geomorphically 349 

significant flood events was broadly comparable between the study 350 

catchments.  The number of events exceeding the 2 year reccurance 351 

interval flood discharge (Q2) was thus established using the model 352 

calibration runs, and the rainfall records clipped so that the same number 353 

of events were simulated in each catchment.  This parameter was selected 354 

as a representative flow that readily transports sediment, and which is 355 

comparable to bankfull discharge (Hey and Thorne, 1986; e.g. Czuba and 356 

Foufoula-Georgiou, 2014; Henshaw et al., 2020).  Values for each 357 

catchment were estimated using flood frequency analysis on the discharge 358 

gauge data and simulated discharge output values.  The two datasets 359 

produced similar or identical numbers of peak flow events, so the values 360 

from the modelled discharge records were used to identify the shortest date 361 

range encompassing 10 bankfull flow events.  The resulting rainfall record 362 

was repeated twice to produce the benchmarked rainfall input.  363 

Additionally, one year was identified in each catchment record which 364 

included two Q2 events, and the record for this year was added to the 365 

beginning of each input three times to serve as the ‘spin-up’ period.  The 366 

subsequent 20-40 year timescale in each catchment thus encompasses a 367 

sufficient number of effective events to identify catchment-scale routing 368 

patterns, while maintaining reasonable computational runtimes. 369 

 370 

Complete and robust parameterisation and validation of catchment-scale 371 

landscape evolution models is notoriously difficult in the (common) absence 372 

of spatially- and temporally-distributed data on grain size, morphological 373 

change and sediment yield.  Our aforementioned use of 374 

hydrometeorological data from the study catchments was designed to 375 

ensure simulated sediment transport and morphodynamic evolution 376 

throughout the modelled networks were driven by sufficient flood events of 377 

appropriate (geomorphologically-effective) magnitude and comparable 378 

frequency.  However, other parameters (e.g. initial grain size, vegetation, 379 

etc.) were standardised across the study catchments to aid isolation of 380 

topological influences, and many (e.g. grid cell size) are necessarily lumped 381 

within the model.  Our analytical framework does not, therefore, seek to 382 

compare simulated sediment yields between study catchments (or, indeed, 383 

to their real-world equivalents) in absolute terms, but instead examines 384 

how relationships between temporal dynamics in outlet sediment yields and 385 

the internal spatio-temporal dynamics of geomorphological change within 386 

the study catchments varied according to network type.  In this sense, our 387 
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simulations may be classed as bridging an exploratory and explanatory 388 

nature (c.f. Desjardins et al., 2020; Larsen et al. 2014).  CAESAR-Lisflood 389 

has proven capability in representing geomorphological processes to 390 

sufficient degree that broad spatial and temporal patterns of morphological 391 

change and sediment yields (or their proxies) can be replicated in a wide 392 

range of fluvial environments (e.g. Coulthard and Macklin, 2001; Feeney et 393 

al., 2020), while existing conceptual models and empirical studies (e.g. 394 

Benda et al., 2004a, 2004b; Benda, 2008; Rice, 2007, Walley et al., 2018) 395 

provide a basis against which to evaluate our results. 396 

 397 

 398 
Figure 5.  The distribution of peak discharge outputs of the CAESAR-Lisflood model, 399 
compared to the peaks from the hydrological gauge data in each study catchment.  A 400 
similar range of values is encompassed by each pair of hydrographs, although the 401 
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discharge measured at each gauge is more left-skewed than those calculated by CAESAR-402 
Lisflood. 403 

  404 

3.2 Visualisation of model outputs 405 

Analysing the spatial and temporal patterns of sediment routing across the 406 

four study catchments necessitated visualising the results in a comparable 407 

manner.  The CAESAR-Lisflood model can generate several different raster 408 

outputs at user-defined intervals; but grid-based results make it difficult to 409 

differentiate the channel network from the bounding hillslopes, and do not 410 

easily exhibit the overall behaviour of reaches or tributary junctions.  The 411 

model was therefore set to save DEM rasters every two months of simulated 412 

time, and a method devised for converting the volume of storage change 413 

along the channel network into a linear network format (Fig. 6).  The river 414 

network was thus defined as a set of hierarchically connected ‘links’, which 415 

each represent a segment of the network between two tributary junctions, 416 

or between a tributary junction and a source/outlet.  The active channel 417 

network first had to be defined within the raster grid, which was achieved 418 

by generating a buffer around each linear network shapefile with a width 419 

three times the grid cell size.  This buffer was manually adjusted along the 420 

larger valley floors to encompass all change evident in a DEM of Difference 421 

calculated for the entire simulation (final DEM output – initial DEM input).  422 

It is likely that this method overestimates the width of valley floors in 423 

headwater tributaries; however, the amount of change in these zones was 424 

observed to be minimal.  Once the area was defined, individual cells within 425 

the active channel area needed to be assigned to specific links without any 426 

overlap at tributary junctions.  The linear network was converted into a 427 

point cloud and used to generate a Voronoi diagram for the entire 428 

catchment, establishing proximity-based boundaries between each link 429 

which were applied to the network buffer.  The buffer was then converted 430 

into raster format using the same cell mapping as the original DEM, thus 431 

defining sets of cells as ‘links’ which could be applied to the output rasters. 432 
 433 
 434 
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 435 
 436 

Figure 6.  Method for extracting link values of absolute and relative change for each 437 
timestep. 438 
 439 

Using MATLAB, a DEM of Difference was calculated for each timestep, by 440 

taking the output DEM and subtracting the one from the previous timestep.  441 

The change in elevation was converted to change in volume by multiplying 442 

the resulting raster by cell area, and the defined buffer zones used to 443 

calculate link-based values.    The sum of all values in each link calculated 444 

the relative change, producing positive values representing aggradation 445 

and negative values representing erosion.  The sum of the absolute values 446 

calculated absolute change, generating values which represent the total 447 

volume of change in that link, regardless of direction.  In addition to 448 

producing linear maps, extracting the absolute and relative change in each 449 

link thus provides a basis for classifying link behaviour.  Links with high 450 

values in both variables, whether the relative change is positive or 451 

negative, indicate locations in the network acting as sinks or sources, 452 

respectively.  Similarly, links with high absolute change and a value of 453 

relative change near zero likely behave as exchange reaches, exhibiting 454 

dynamic behaviour but little net aggradation or erosion. 455 

 456 

4. CATCHMENT-SCALE PATTERNS OF SEDIMENT TRANSFER 457 

 458 

4.1 Spatial patterns of sediment flux 459 

The CAESAR-Lisflood results from each of the four study catchments exhibit 460 

distinctly different patterns of dynamic behaviour.  Figure 7 displays the 461 

total absolute change and total relative change in the most dynamic links 462 

over the course of each simulation, with key hotspots labelled for ease of 463 

identification.  In the Type A catchment, the most dynamic reaches are 464 

concentrated in the lowest 5th order reach and the connected 4th order 465 
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tributaries, with some extending into 3rd order links (Fig. 7a).  These links 466 

exhibit largely erosional behaviour over the course of the simulation, with 467 

some intermittent aggradational zones.  Key hotspots occur at confluence 468 

4 at the head of the 5th order reach, and link 2 just downstream.  This 469 

pattern is indicative of the dissected network structure, in which confluence 470 

4 represents a significant point of convergence.  Hotspots 3 and 6 appear 471 

to behave differently to the other identified locations as they indicate highly 472 

aggradational links, which occur at the outlet of subnetworks relatively 473 

disconnected from the primary sediment pathways. 474 

 475 

The dissected Type B network contains a similar spatial pattern to the Type 476 

A catchment, in which the most dynamic reaches are also concentrated 477 

within the 5th order reach, extending from the outlet to confluence 2 (Fig. 478 

7b).  Sediment is concentrated at points in the network where tributaries 479 

of similar magnitudes converge, although the values of absolute change 480 

are more evenly distributed across the catchment with fewer significant 481 

hotspots.  A similar pattern emerges from the values of relative change 482 

(Fig. 7f), with the links indicating erosion and deposition exhibiting values 483 

closer to -1 and 1, respectively, compared to those in the Type A network.  484 

These patterns suggest that sediment moves more readily through the Type 485 

B catchment and may therefore be more sensitive to disturbance events, 486 

with the identified hotspots possibly having a lesser impact on the overall 487 

pattern of sediment connectivity. 488 

 489 

In contrast to the Type A and B catchments, the Type D river is large, 490 

elongate, and contains a network oriented around a central mainstem.  The 491 

spatial pattern of dynamic reaches occurs predominantly through this 492 

mainstem channel, but also extends upstream of location 2 into the 493 

headwater tributaries (Fig. 7c).  This confluence is both a significant point 494 

of convergence in the network, and a drainage anomaly in which the 495 

tributaries converge at an angle greater than 90°, and subsequently 496 

exhibits a value of absolute change significantly higher than anywhere else 497 

in the catchment.   The map of relative change indicates that hotspot 2 is 498 

a highly aggradational set of links (Fig. 7g), and it is therefore likely that 499 

this site intercepts sediment from the upstream network and modulates its 500 

delivery downstream.  The downstream pattern of relative change then 501 

suggests that transport through the mainstem channel is intermittent, with 502 

alternating aggradational and erosional links.  This pattern is particularly 503 

emphasised at hotspot 2, which indicates a zone of aggradation 504 

immediately upstream of a gorge. 505 
 506 
 507 
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 508 
 509 
Figure 7.  Simulation results for the Type A (a & e), Type B (b & f), Type D (c & g) and the 510 
Type E catchments (d & h).  Panels (a-d) show the absolute change calculated from the 511 
CAESAR-Lisflood outputs, and panels (e-h) show the relative change in each link.  Values 512 
of absolute change are normalised by the maximum value of each dataset, thus a value 513 
of 1 in different catchments does not indicate the same volume of change.  Relative change 514 
is divided into net aggradation (positive) and net degradation (negative), and the values 515 
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are normalised by the largest absolute value of each dataset, thus a value of 1 and -1 in 516 
the same catchment indicates the same volume of change.  The links identified as the 517 
most dynamic (panels a-d) are used to identify which links to highlight in the maps of 518 
relative change (panels e-h). 519 
 520 

The Type E network has a similarly mainstem-dominant structure but is 521 

split between two key subcatchments which converge at location 1 (Fig. 522 

7d).  This confluence thus represents a significant point of convergence in 523 

the network and consequently exhibits dynamic behaviour like those in the 524 

other catchment types.  The western subcatchment upstream of hotspot 1 525 

appears to be more dynamic than the eastern network, with high values of 526 

absolute change concentrated through the central mainstem up to hotspot 527 

4.  The pattern of relative change through this reach suggests a somewhat 528 

intermittent pattern of transport (Fig. 7h), similar to behaviour in the Type 529 

D mainstem.  Location 3 is the most dynamic links in the network however, 530 

which occurs just upstream of hotspot 4 separated by a highly confined 531 

reach.  This location accumulates sediment transported from the small 532 

subnetwork upstream, likely in response to the controlling influence of the 533 

downstream link, and thus exhibits similarities to hotspots 3 and 6 in the 534 

Type A network. 535 

 536 

4.2 Temporal patterns of sediment flux 537 

 538 

The simulation results were divided into annual timesteps to explore how 539 

the observed spatial patterns of absolute and relative change evolve over 540 

time.  A key observation which emerged from these maps was the 541 

frequent dissimilarity between sequential timesteps, where the overall 542 

pattern of dynamic links does not appear to be influenced by the pattern 543 

observed in the previous timestep.  Instead, years which exhibit similar 544 

values of absolute change summed across all links in the network display 545 

clear similarities in spatial patterns.  Two animation files are thus 546 

provided for each catchment comprised of maps of absolute and relative 547 

change for each timestep in the simulation, one ordered by timestep and 548 

the other by the total volume of absolute change in each year. 549 
 550 

The spatial patterns of absolute change in the Type A catchment are 551 

dynamic, with hotspot links occurring at different locations across the 552 

simulation (Animation A.1).  The dissected network structure results in 553 

sediment transport concentrating in multiple subnetworks, and the Type A 554 

network thus exhibits the most hotspots out of the four study catchments.  555 

These hotspots occur at key junctions in the network and do not move over 556 

time, although some hotspots do not exhibit dynamic behaviour in every 557 

timestep.  Hotspot 4 emerges as one of the most dynamic links in the 558 

network, as there are very few timesteps in which it is not highlighted.  The 559 

comparatively low values of relative change indicate that sediment is 560 

regularly deposited and re-entrained at this confluence, thus modulating 561 

the transfer of sediment through the downstream reaches. 562 

 563 
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The relationship between total absolute change and the spatial patterns of 564 

dynamic links is displayed in Animation A.2, which exhibits the Type A 565 

annual timesteps in order of magnitude.  The most active timesteps (1-4) 566 

indicate spatial patterns concentrated in the downstream parts of the 567 

catchment and hotspots at key confluences, suggesting that the entire 568 

catchment is readily transporting sediment.  With less activity, the overall 569 

pattern of the most dynamic reaches shifts away from the main valley floor 570 

and hotspots occur further upstream (e.g. timesteps 6 and 5, 29 and 16), 571 

exhibiting variability in the pattern of transport across the subnetworks.  572 

With further decreases, hotspots and the most dynamic links move into the 573 

upper, steepest parts of the catchment (e.g. timesteps 14 & 24), before 574 

the volumes of change across the dynamic links become similar enough 575 

across the steep slopes that no hotspots are apparent (e.g. timesteps 30 & 576 

25).  At this point, sediment transport is likely governed by hillslopes rather 577 

than fluvial processes.  This relationship between the spatial pattern of 578 

dynamic links and total absolute change in the Type A catchment thus 579 

suggests that sediment transport in separate subnetworks activates under 580 

different conditions, and that the amount of change occurring within each 581 

subcatchment tends to be highlighted at each outlet. 582 
 583 
Animation A.1.  Annual Timesteps of absolute and relative change for the Type A 584 
catchment (Motueka River).  Timesteps are displayed in sequential order. 585 
 586 
Animation A.2.  Annual Timesteps of absolute and relative change for the Type A 587 
catchment (Motueka River).  Timesteps are displayed in order of descending magnitude 588 
of absolute change. 589 
 590 

The spatial pattern of absolute change in the Type B network is the most 591 

dynamic of the study catchments, with little overall similarity between 592 

timesteps and various emerging hotspots (Animation B.1).  The pattern of 593 

dynamic links which emerges across the network is inconsistent throughout 594 

the simulation and exhibits greater diversity than identified in the maps of 595 

all timesteps.  Hotspots move within the network over time, and typically 596 

occur within the wide, flat parts of the central catchment rather than the 597 

downstream 5th order reaches.  Like the Type A river, the Type B catchment 598 

exhibits similarity in the distribution of dynamic links at timesteps which 599 

have similar volumes of total absolute change, although the majority of 600 

timesteps exhibit low values (Animation B.2).  Of the few timesteps which 601 

have larger volumes of total absolute change, only a few have values 602 

similar enough to exhibit consistency between the spatial patterns of 603 

dynamic links (timesteps 5, 13), although the relationship is clearly evident 604 

in the low-value timesteps (e.g. 4, 6, 7, 8).  These again occur in some of 605 

the steepest parts of the catchment and indicate aggradational behaviour 606 

from hillslopes. 607 

 608 
Animation B.1.  Annual Timesteps of absolute and relative change for the Type B 609 
catchment (South Ashburton River).  Timesteps are displayed in sequential order. 610 
 611 
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Animation B.2.  Annual Timesteps of absolute and relative change for the Type B 612 
catchment (South Ashburton River).  Timesteps are displayed in order of descending 613 
magnitude of absolute change. 614 
 615 

The spatial pattern of absolute change in the Type D network is the least 616 

dynamic of the study catchments, as the distribution of dynamic links 617 

across the network remains very similar throughout the simulation 618 

(Animation D.1).  The pattern is consequently very similar to the previously 619 

presented maps of the full simulation (Fig. 7), and the identified hotspot at 620 

confluence 2 exhibits the most dynamic behaviour in all timesteps except 621 

those with the least volumes of total absolute change.  The consistency 622 

does not extend to the patterns of relative change, although the collection 623 

of links at location 2 indicate predominantly aggradational behaviour 624 

throughout the simulation.  Given this more consistent spatial pattern in 625 

the Type D catchment, a relationship between the distribution of dynamic 626 

links and the volume of total absolute change is difficult to determine at 627 

the larger volumes (e.g. Animation D.2, timesteps 13, 5, 4, 26).  Figure 8 628 

indicates that the spatial pattern is more consistent over a large range of 629 

absolute change values than the Type A and B networks, but exhibits the 630 

same shift in spatial pattern in timesteps of little total absolute change.  631 

With decreasing volumes, the dynamic behaviour moves upstream (e.g. 632 

Animation D.2, timesteps 11 and 18) and becomes consistently 633 

aggradational regardless of the sequential order of the timesteps (e.g. 634 

Animation D.2, timesteps 22 and 24), and these patterns likely reflect the 635 

shift from fluvial transport to hillslope processes. 636 
 637 
Animation D.1.  Annual Timesteps of absolute and relative change for the Type D 638 
catchment (Waiau Toa/Clarence River).  Timesteps are displayed in sequential order. 639 
 640 
Animation D.2.  Annual Timesteps of absolute and relative change for the Type D 641 
catchment (Waiau Toa/Clarence River).  Timesteps are displayed in order of descending 642 
magnitude of absolute change. 643 
 644 

The spatial pattern of absolute change in the Type E catchment is less 645 

dynamic than the Type A or B networks, but also indicates less consistency 646 

over time than the Type D river (Animation E.1).  The locations of key 647 

reaches appear to correspond with those highlighted in the previous maps 648 

of the full simulation results (Fig. 7), and the western subcatchment 649 

remains more consistent than the east throughout the simulation.  Hotspot 650 

3 consistently acts as an aggradational sink, likely influencing the 651 

predominantly erosional behaviour of the downstream reaches, while 652 

hotspot 2 exhibits intermittent transport through a collection of reaches.  653 

As in the Type D network, hotspot 1 lies at the junction of two key 654 

subnetworks and acts as a bottleneck modulating connectivity downstream, 655 

although this confluence occurs closer to the outlet and thus does not have 656 

the same impact on the overall pattern of connectivity.  Despite this 657 

relatively consistent spatial pattern of dynamic links it is clear that 658 

timesteps with similar volumes of absolute change exhibit similar spatial 659 

patterns within the network (e.g. Animation E.2, timesteps 4 and 12, 6 and 660 
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7).  The most active timesteps (1, 2, 3, & 4) exhibit the most dynamic 661 

behaviour in the lower reaches of the network, suggesting transport 662 

throughout the catchment.  As activity decreases, the most dynamic 663 

reaches move upstream (e.g. Animation E.2, timesteps 12 and 18) and into 664 

the steeper parts of the catchment (e.g. Animation E.2, timesteps 8 and 665 

6), reflecting the same trend of distributed sediment transport observed in 666 

the other catchments.  Those timesteps with very low volumes of total 667 

absolute change again exhibit nearly identical patterns of aggradation 668 

within the steepest tributaries (e.g. Animation E.2, timesteps 33 and 16), 669 

driven by a shift from fluvial processes to into hillslopes. 670 
 671 
Animation E.1.  Annual Timesteps of absolute and relative change for the Type E 672 
catchment (Waihao River).  Timesteps are displayed in sequential order. 673 
 674 
Animation E.2.  Annual Timesteps of absolute and relative change for the Type E 675 
catchment (Waihao River).  Timesteps are displayed in order of descending magnitude of 676 
absolute change. 677 

 678 

In every study catchment there is a clear relationship between the 679 

distribution of dynamic links across the network and the total absolute 680 

change occurring in each timestep.  Timesteps with similar values of change 681 

produce similar patterns of dynamic links irrespective of the simulation 682 

sequence, a pattern most pronounced in years with little total change.  683 

There appears to be greater consistency in the spatial patterns in the Type 684 

D and E catchments; however, each simulation also contains variable 685 

proportions of timesteps with high values of total absolute change 686 

compared to low ones.  Figure 8 therefore compares this relationship across 687 

the network ‘types’, in which panel (a) displays the total absolute change 688 

in each timestep sorted by magnitude, and panel (b) indicates the spatial 689 

patterns of dynamic links associated with those change values.  These 690 

figures indicate that while the four network ‘types’ do have distinctly 691 

different distributions of total absolute change values over time (Fig. 8a), 692 

those distributions do not correspond to a similar diversity in spatial 693 

patterns of dynamic links (Fig. 8b) supporting the greater consistency 694 

observed in the Type D and E animation maps. This relationship is 695 

particularly evident in the Type D network which has a much higher 696 

proportion of timesteps with high values of total absolute change compared 697 

to the other network ‘types’ (Fig. 8a), but a lower proportion of distinct 698 

spatial patterns of active links (Fig. 8b). 699 

 700 

 701 
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 702 
Figure 8.  Distributions of total absolute change in each study catchment, with (a) 703 
timesteps sorted by magnitude of change and (b) the distributions of distinctive active 704 
reach combinations across the values of total absolute change.  Values of absolute change 705 
are normalised by the largest value in each simulation, and the timesteps in (a) are 706 
normalised by the length of each simulation. 707 

 708 

 709 

4.3 Outlet Relationships 710 

The relationship between the spatial pattern of dynamic links and the 711 

magnitude of network-scale change can be further explored through the 712 

processes of sediment and flow discharge at the outlet.  These are likely to 713 

be the primary drivers of total absolute change, and the strength of the 714 

relationships provide insight to the network’s connectivity.  The CAESAR-715 

Lisflood model does not record flow or sediment discharge throughout the 716 

catchment, so Spearman’s correlation matrices were generated from the 717 

annual values at the outlet.  Table 4 displays the correlation coefficients in 718 

which insignificant relationships (p > 0.05) are greyed out. 719 

 720 
Table 4.  Correlation coefficients of the relationships between total absolute change (CHa), 721 
sediment discharge (Qs) and flow discharge (Qw).  Values with statistically insignificant 722 
relationships (p > 0.05) are greyed out. 723 
 724 

 Type A Type B Type D Type E 

CHa and Qs 0.98 0.11 0.79 0.95 

CHa and Qw 0.17 0.32 0.51 0.84 

Qw and Qs 0.20 0.57 0.45 0.93 

 725 

The Type A catchment exhibits a strong, positive relationship between the 726 

total absolute change and sediment discharge at the outlet, but no 727 

significant relationships between the other variables.  This pattern suggests 728 

that the volume of sediment reaching the outlet is proportionate to the 729 
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volume of sediment moving within the network, and thus the volume of 730 

absolute change in each timestep is largely driven by processes of sediment 731 

transport.  These variables are not related to flow discharge, however, 732 

which indicates that the sediment transport and absolute change processes 733 

are disconnected from flow magnitude.  These relationships thus indicate a 734 

disconnected catchment, in which sediment stores within the network 735 

prevent sediment transport in proportion to flow discharge. 736 
 737 

 738 
 739 
Figure 9.  Annual timeseries data from the outlets of the four model catchments, with 740 
absolute change (CHa), sediment discharge (Qs) and flow discharge (Qw) plotted over 741 
time. 742 
 743 
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 744 
 745 

 746 
 747 
Figure 10.  Sediment delivery ratios in each catchment, calculated as the ratio of annual 748 
sediment yield at the outlet to annual erosion across the catchment. 749 
 750 

In contrast to the Type A catchment, the Type B network does not display 751 

significant relationships between total absolute change and either of the 752 

other variables, but contains a significant, moderate relationship between 753 

sediment and flow discharge (Table 4).  This pattern suggests that the 754 

network contains relatively few perturbations which modulate the sediment 755 

signal, and that geomorphic change occurs across a range of flow conditions 756 

which are not always conveyed to the outlet.  These relationships thus 757 
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indicate that the Type B network is more connected than Type A, as high 758 

flows transport larger volumes of sediment more consistently, but the 759 

relatively weak relationship and non-linear correlation with total absolute 760 

change indicate the catchment is still largely disconnected.  As in the Type 761 

A catchment, sediment is likely being trapped by internal stores and thus 762 

not transported to the outlet, although Figs. 9b and 10b suggest this 763 

transfer occurs much more efficiently during peak flows.   764 

 765 

The Type D catchment exhibits significant, moderate relationships between 766 

all three variables, with a slightly stronger correlation between total 767 

absolute change and sediment discharge at the outlet (Table 4).  As in the 768 

Type A network, this suggests that the volume of sediment reaching the 769 

outlet is relatively proportionate to the volume of sediment moving in the 770 

network, and that the volume of absolute change in each timestep is driven 771 

by sediment transport processes.  Unlike the Type A catchment, however, 772 

both total absolute change and sediment discharge exhibit moderate 773 

correlations with flow discharge, indicating greater connectivity within the 774 

catchment overall.  The moderate relationship between flow and sediment 775 

discharge displays variable sediment volumes within both high and low flow 776 

discharges, suggesting some disconnectivity within the network.  As 777 

previously observed, this is likely to be the modulating influence of the 778 

hotspot at location 2 at the head of the mainstem reach, which acts as a 779 

bottleneck preventing sediment transport readily downstream and 780 

impeding stronger relationships between flow discharge and the other 781 

variables. 782 

 783 

The Type E catchment exhibits significant, strong relationships across all 784 

three variables, indicating that sediment transfer is more connected than 785 

any of the other catchments (Table 4).  High flow conditions drive high 786 

sediment discharge and geomorphic change across the network, and these 787 

values decrease steadily with flow magnitude.  As in the Type B catchment, 788 

the Type E network exhibits skewed distributions of total absolute change 789 

and sediment discharge, indicating a low-energy river which often operates 790 

in baseflow conditions.  This has not impacted the strength of the 791 

relationships as much as in the Type B network, however, despite being 792 

particularly pronounced in the two distinct groupings within the sediment 793 

discharge data.  These groups appear to be associated with high and low 794 

flow conditions with no values occurring in between, suggesting that some 795 

disconnectivity likely occurs under very low flow conditions. 796 

 797 

The outlet relationships from the study catchments thus exhibit relatively 798 

strong relationships in the Type D and E networks, and comparatively weak 799 

ones in the Type A and B catchments.  The non-linear relationships 800 

exhibited by Types A and B are characteristic of fluvial systems, in which 801 

high flow conditions may induce erosional or aggradational behaviour of 802 

varying magnitude.  In contrast, the Type D and E catchments exhibit 803 

relatively linear relationships, which do not result from the model 804 
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functionality as CAESAR has been established to enable self-organised 805 

criticality (SOC) and thus non-linear behaviour (Coulthard and Van De Wiel, 806 

2007).  This same study identified catchment morphology as the most 807 

significant driver of non-linearity in fluvial systems due to the varying 808 

potential for internal sediment storage (Coulthard and Van De Wiel, 2007); 809 

and Walley et al. (2018) identified a greater potential for storage in a 810 

dissected river network compared to a mainstem-dominant structure, 811 

resulting from an increased number of confluences at which similar-sized 812 

tributaries converged.  These studies, combined with the disparity in outlet 813 

relationships identified using the CAESAR-Lisflood model suggest that 814 

sediment pathways through mainstem-dominant networks are 815 

fundamentally different to those in their dissected counterparts, and exhibit 816 

greater connectivity over a variety of flow conditions. 817 

  818 

5. DISCUSSION  819 

The key differences in the spatio-temporal patterns of sediment 820 

connectivity between catchments with divergent network structures are 821 

summarised in Fig. 11, within the framework of the original topological 822 

classification outlined in Walley et al. (2020).  Most of the variation in 823 

sediment connectivity occurs between the dissected networks (Type A and 824 

B) compared to the mainstem-dominant structures (Type D and E), which 825 

corresponds to the first component of the PCA (horizontal axis) and thus 826 

the greatest variation in the original topological metrics.  This is evident in 827 

the spatial patterns of dynamic links, which indicate that change occurs 828 

throughout the Type A and B networks but concentrates in the central 829 

channels of the mainstem-dominant catchments.  These patterns 830 

correspond to the distribution of hotspots in the different network 831 

structures, as the nature of convergence in the Type D and E catchments 832 

generates hotspots further upstream compared to the Type A and B 833 

networks.  The two hotspots identified in the Type D catchment appear to 834 

have the most significant influence on sediment routing, particularly in 835 

comparison to the relatively insignificant hotspots in Type B.  This suggests 836 

that the impact of these hotspots on modulating sediment routing is 837 

additionally influenced by network topography (vertical axis). 838 

 839 

The differences observed in the temporal patterns of sediment connectivity 840 

exhibit similar variation, with most occurring along the first principal 841 

component.  This is evidenced by the spatial pattern of dynamic links 842 

evolving more readily over time in dissected network structures, and key 843 

differences in the relationships between drivers of change in each 844 

catchment.  These results suggest that the Type B network exhibits the 845 

most dynamic behaviour, in direct contrast to the Type D catchment which 846 

appears to contain the most stable pattern of dynamic links.  These patterns 847 

were found to correspond to the total absolute change occurring in each 848 

annual timestep, and while this relationship was evident in all network 849 

types, the pattern of dynamic links adjusted to variation in total absolute 850 

change more readily in the dissected catchments.  This trend is likely driven 851 
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by the relationships between total absolute change, flow, and sediment 852 

discharge, which were also found to be influenced by network structure.  853 

The mainstem-dominant networks exhibit much stronger, linear 854 

relationships between these variables, while those in the dissected 855 

networks are non-linear.  856 

 857 

The patterns of sediment connectivity observed in the model results exhibit 858 

a clear relationship between sediment routing and network structure and 859 

support several conceptual models of catchment-scale connectivity.  Few 860 

studies explicitly explore this relationship, and of these, only Walley et al. 861 

(2018) systematically analyses the role of network structure in modulating 862 

the downstream transfer of sediment.  In both studies, the dissected 863 

structure drives greater interaction between sediment stores at tributary 864 

confluences compared to the mainstem-dominant network, which exhibits 865 

transfer predominantly along the central ‘root’ channel (Walley et al., 866 

2018).  In addition, the primary hotspot identified in the dissected network 867 

of the Walley et al. (2018) study occurs close to the outlet, similar to the 868 

Type A network, much further downstream than the mainstem-dominant 869 

structures (e.g. Type D) which occur at the head of the mainstem reaches.  870 

These results further support the conceptual model of catchment-scale 871 

connectivity posed by Benda et al (2004a, 2004b), Benda (2008) and later 872 

quantified by Rice (2017), which defines significant confluences as tributary 873 

junctions that exhibit substantial changes in channel and valley 874 

morphology.  They suggest that such confluences are likely to occur 875 

throughout the network and with greater frequency in compact (dissected) 876 

catchments compared to linear (mainstem-dominated) structures because 877 

they have a higher probability of relatively large tributaries joining the 878 

network downstream (Benda et al., 2004a; Rice, 2017).  These patterns 879 

suggest that some tributary junctions are topologically predisposed to 880 

confluence effects and correspond to the distributions of hotspots observed 881 

in the modelled catchments. 882 
 883 
 884 
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 885 
 886 

Figure 11.  Conceptual model of the spatio-temporal patterns of sediment connectivity 887 
within the topological classification framework. 888 
 889 

Unlike previous catchment-scale sediment dynamics studies, numerical 890 

modelling offers a unique opportunity to capture dynamical sediment 891 

routing behaviour at the catchment scale.  LEMs like CAESAR-Lisflood 892 

employ DEMs at fine resolutions to model highly detailed processes and 893 

complex outcomes.  They are readily amenable to scenario modelling and 894 

have robust uncertainty analyses, but are also computationally intensive, 895 

and arguably over parameterised for process-specific studies.  A key 896 

drawback in using the CAESAR-Lisflood model was the inability to track the 897 

pathways of individual sediment parcels through the fluvial network, as 898 

there is no way to extract this information at the catchment scale from the 899 

cellular approach to sediment routing.  This grid-based structure also 900 

distributes the computational processing across the entire catchment rather 901 

than concentrating it on the key changes within fluvial channel network, 902 

and severely limited our ability to explore sediment routing across different 903 

grain size fractions.  Alternative vector-based models have more recently 904 

become more prominent in modelling catchment-scale sediment dynamics 905 

to address some of these shortcomings (e.g. the network-based framework 906 

(Czuba and Foufoula-Georgiou, 2014, 2015), CASCADE (Schmitt et al., 907 

2016; Tangi et al., 2019)), and may provide better fit-for-purpose 908 

solutions.  Rather than attempting to model every aspect of the fluvial 909 

system, these models focus on simulating individual processes to limit the 910 

necessary computational capabilities without over-simplifying the system. 911 
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 912 

The topological control of river networks on catchment-scale sediment 913 

dynamics has significant implications for our understanding of fluvial 914 

systems, river management and future research opportunities.  Knowledge 915 

of the discontinuous transfer of sediment is important for minimising the 916 

impact of a variety of activities, including mineral and gravel mining, 917 

channelisation and flood protection schemes and the management of 918 

hydro-power dams.  The role of hotspots in sediment connectivity also has 919 

implications for estimating the spatial and temporal responses to 920 

disturbance events, and the potential downstream impacts of landslide 921 

dams, aggradation and channel avulsion, and habitat degradation.  922 

Understanding the spatial and temporal behaviour of hotspots in different 923 

network types also has significant implications for our understanding of 924 

sedimentary records, and interpretations of paleoenvironmental 925 

reconstruction based on stratigraphy.  Models of landscape evolution tend 926 

to simulate environmental signals as dampened by the transport system or 927 

lagged, but it has been suggested that this may be too simplistic (Coulthard 928 

and Van De Wiel, 2007; Jerolmack and Paola, 2010).  Jerolmack and Paola 929 

(2010) instead propose that non-linearity and self-criticality in fluvial 930 

systems can destroy environmental signals transported through fluvial 931 

systems by ‘shredding’, thus making interpretations of paleoenvironmental 932 

conditions from sedimentary records problematic (Coulthard and Van De 933 

Wiel, 2007; Jerolmack and Paola, 2010).  The patterns of sediment routing 934 

identified in this study support the idea that fluvial systems extensively 935 

modulate sedimentary inputs, but further indicate that dissected catchment 936 

structures transform environmental signals more substantially than others.  937 

This has significant implications for research involving sedimentary records, 938 

as it suggests that system memory is better preserved in catchments with 939 

mainstem-dominant structures, and thus the stratigraphy observed in 940 

these networks is more likely to reflect the paleoenvironmental conditions 941 

than internal system dynamics.  The scale of such networks must also be 942 

considered as particularly large rivers will likely incorporate a variety of 943 

internal structures, especially if the catchment area extends into disparate 944 

regional environments.  Further research is required into these 945 

relationships; however, it is clear that the influence of network structure 946 

on the spatio-temporal patterns of sediment connectivity is vital for our 947 

understanding of fluvial systems at the catchment scale. 948 

 949 

6. CONCLUSIONS 950 

Drainage network topology plays a clear role in modulating the spatio-951 

temporal pattern of sediment transfer from source to sink.  Building on the 952 

theoretical understanding of how sediment is transferred through 953 

catchment-scale river systems and the analysis of network topology 954 

provided by Walley et al. (2020), this study compares patterns of sediment 955 

routing across topologically distinct structures, and identifies key 956 

differences in the spatio-temporal patterns of sediment transfer.  These 957 

patterns indicate that dynamic behaviour is structured differently in each 958 
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of the network ‘types’, with particular divergence between the dissected 959 

networks (Type A and B) which exhibit dynamic links throughout the 960 

network, and the mainstem-dominant structures (Type D and E) which 961 

indicate that change is concentrated within the mainstem reach.  Key 962 

differences were also observed in the occurrence of hotspots across the 963 

networks, with the greatest dissimilarity between the patterns was 964 

observed between the Type B network which contained several insignificant 965 

hotspots, and the Type D structure, in which a single site significantly 966 

influenced the overall pattern of connectivity.  These distributions likely 967 

influence the observed temporal patterns of sediment connectivity, which 968 

exhibit similar variation between the most consistent patterns in the Type 969 

D network compared to the most inconsistent in the Type B catchment. 970 

 971 

Control of network topology on sediment routing and connectivity is further 972 

evidenced by the different relationships between absolute change and flow 973 

and sediment discharge at the outlet of each network.  The dissected 974 

networks (Type A and B) exhibit mostly non-linear relationships between 975 

these variables in contrast to the moderate-strong linear relationships in 976 

the mainstem-dominant structures, suggesting that the latter exhibit 977 

greater connectivity across a range of flow conditions.  This difference has 978 

significant implications for our understanding of sedimentary records and 979 

interpretations of paleoenvironmental reconstruction based on 980 

stratigraphy, as it suggests that the extent of transformation of 981 

environmental signals through fluvial systems is largely dependent on 982 

network structure.  Further research is necessary to fully understand how 983 

such signals are modulated by network topology and interaction with 984 

hotspots, particularly the internal transformations not captured by the 985 

CAESAR-Lisflood model. 986 
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