201 research outputs found
Internet Sensor Grid: Experiences with Passive and Active Instruments
The Internet is constantly evolving with new emergent behaviours arising; some of them malicious. This paper discusses opportunities and research direction in an Internet sensor grid for malicious behaviour detection, analysis and countermeasures. We use two example sensors as a basis; firstly the honeyclient for malicious server and content identification (i.e. drive-by-downloads, the most prevalent attack vector for client systems) and secondly the network telescope for Internet Background Radiation detection (IBR - which is classified as unsolicited, non-productive traffic that traverses the Internet, often malicious in nature or origin). Large amounts of security data can be collected from such sensors for analysis and federating honeyclient and telescope data provides a worldwide picture of attacks that could enable the provision of countermeasures. In this paper we outline some experiences with these sensors and analyzing network telescope data through Grid computing as part of an âintelligence layerâ within the Internet
Dependence of Quadrupole Strength in the Transition
Models of baryon structure predict a small quadrupole deformation of the
nucleon due to residual tensor forces between quarks or distortions from the
pion cloud. Sensitivity to quark versus pion degrees of freedom occurs through
the dependence of the magnetic (), electric (), and
scalar () multipoles in the
transition. We report new experimental values for the ratios
and over the range = 0.4-1.8 GeV, extracted from
precision data using a truncated multipole expansion.
Results are best described by recent unitary models in which the pion cloud
plays a dominant role.Comment: 5 pages, 5 figures, 1 table. To be published in Phys. Rev. Lett.
(References, figures and table updated, minor changes.
Differential cross sections and recoil polarizations for the reaction gamma p -> K+ Sigma0
High-statistics measurements of differential cross sections and recoil
polarizations for the reaction have been
obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass
energies () from 1.69 to 2.84 GeV, with an extensive coverage in the
production angle. Independent measurements were made using the
() and () final-state topologies,
and were found to exhibit good agreement. Our differential cross sections show
good agreement with earlier CLAS, SAPHIR and LEPS results, while offering
better statistical precision and a 300-MeV increase in coverage.
Above GeV, - and -channel Regge scaling behavior
can be seen at forward- and backward-angles, respectively. Our recoil
polarization () measurements represent a substantial increase in
kinematic coverage and enhanced precision over previous world data. At forward
angles we find that is of the same magnitude but opposite sign as
, in agreement with the static SU(6) quark model prediction of
. This expectation is violated in some mid- and
backward-angle kinematic regimes, where and are of
similar magnitudes but also have the same signs. In conjunction with several
other meson photoproduction results recently published by CLAS, the present
data will help constrain the partial wave analyses being performed to search
for missing baryon resonances.Comment: 23 pages, 17 figure
Search for pentaquark in high statistics measurement of at CLAS
The exclusive reaction was studied in the
photon energy range between 1.6-3.8 GeV searching for evidence of the exotic
baryon . The decay to requires the assignment of
strangeness to any observed resonance. Data were collected with the CLAS
detector at the Thomas Jefferson National Accelerator Facility corresponding to
an integrated luminosity of 70 . No evidence for the
pentaquark was found. Upper limits were set on the production cross section as
function of center-of-mass angle and mass. The 95% CL upper limit on the
total cross section for a narrow resonance at 1540 MeV was found to be 0.8 nb.Comment: Submitted to Physical Review Letter
The e p -> e' p eta reaction at and above the S11(1535) baryon resonance
New cross sections for the reaction e p -> ep eta are reported for total
center of mass energy W = 1.5--1.86 GeV and invariant momentum transfer Q^2 =
0.25--1.5 GeV^2. This large kinematic range allows extraction of important new
information about response functions, photocouplings, and eta N coupling
strengths of baryon resonances. Expanded W coverage shows sharp structure at W
\~ 1.7 GeV; this is shown to come from interference between S and P waves and
can be interpreted in terms of known resonances. Improved values are derived
for the photon coupling amplitude for the S11(1535) resonance.Comment: 11 pages, RevTeX, 5 figures, submitted to Phys. Rev. Let
Measurement of Inclusive Spin Structure Functions of the Deuteron
We report the results of a new measurement of spin structure functions of the
deuteron in the region of moderate momentum transfer ( = 0.27 -- 1.3
(GeV/c)) and final hadronic state mass in the nucleon resonance region (
= 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam
at Jefferson Lab off a dynamically polarized cryogenic solid state target
(ND) and detected the scattered electrons with the CEBAF Large
Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal
double spin asymmetry and the spin structure function . Our
data are generally in reasonable agreement with existing data from SLAC where
they overlap, and they represent a substantial improvement in statistical
precision. We compare our results with expectations for resonance asymmetries
and extrapolated deep inelastic scaling results. Finally, we evaluate the first
moment of the structure function and study its approach to both the
deep inelastic limit at large and to the Gerasimov-Drell-Hearn sum rule
at the real photon limit (). We find that the first moment varies
rapidly in the range of our experiment and crosses zero at between
0.5 and 0.8 (GeV/c), indicating the importance of the resonance at
these momentum transfers.Comment: 13 pages, 8 figures, ReVTeX 4, final version as accepted by Phys.
Rev.
photoproduction on the proton for photon energies from 0.725 to 2.875 GeV
Differential cross sections for the reaction have been
measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged
photon beam with energies from 0.725 to 2.875 GeV. Where available, the results
obtained here compare well with previously published results for the reaction.
Agreement with the SAID and MAID analyses is found below 1 GeV. The present set
of cross sections has been incorporated into the SAID database, and exploratory
fits have been made up to 2.7 GeV. Resonance couplings have been extracted and
compared to previous determinations. With the addition of these cross sections
to the world data set, significant changes have occurred in the high-energy
behavior of the SAID cross-section predictions and amplitudes.Comment: 18 pages, 10 figure
Measurement of Beam-Spin Asymmetries for Deep Inelastic Electroproduction
We report the first evidence for a non-zero beam-spin azimuthal asymmetry in
the electroproduction of positive pions in the deep-inelastic region. Data have
been obtained using a polarized electron beam of 4.3 GeV with the CLAS detector
at the Thomas Jefferson National Accelerator Facility (JLab). The amplitude of
the modulation increases with the momentum of the pion relative to
the virtual photon, , with an average amplitude of for range.Comment: 5 pages, RevTEX4, 3 figures, 2 table
Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments
We report on the measurement of inclusive electron scattering off a carbon
target performed with CLAS at Jefferson Laboratory. A combination of three
different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an
invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum
transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous
measurements of the inclusive electron scattering off proton and deuteron,
which cover a similar continuous two-dimensional region of Q2 and Bjorken
variable x, permit the study of nuclear modifications of the nucleon structure.
By using these, as well as other world data, we evaluated the F2 structure
function and its moments. Using an OPE-based twist expansion, we studied the
Q2-evolution of the moments, obtaining a separation of the leading-twist and
the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist
contributions to the F2 moments exhibits the well known EMC effect, compatible
with that discovered previously in x-space. The total higher-twist term in the
carbon nucleus appears, although with large systematic uncertainites, to be
smaller with respect to the deuteron case for n<7, suggesting partial parton
deconfinement in nuclear matter. We speculate that the spatial extension of the
nucleon is changed when it is immersed in the nuclear medium.Comment: 37 pages, 15 figure
Measurement of the Polarized Structure Function for in the Resonance Region
The polarized longitudinal-transverse structure function
has been measured in the resonance region at and 0.65
GeV. Data for the reaction were taken at Jefferson Lab
with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally
polarized electrons at an energy of 1.515 GeV. For the first time a complete
angular distribution was measured, permitting the separation of different
non-resonant amplitudes using a partial wave analysis. Comparison with previous
beam asymmetry measurements at MAMI indicate a deviation from the predicted
dependence of using recent phenomenological
models.Comment: 5 pages, LaTex, 4 eps figures: to be published in PRC/Rapid
Communications. Version 2 has revised Q^2 analysi
- âŠ