4,049 research outputs found

    Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al₂O₃) Membranes

    Get PDF
    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of a-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 degrees C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of similar to 5 angstrom at carbonisation temperatures of 700 degrees C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and a-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m(-2) h(-1) for seawater (NaCl 3.5 wt%) at 75 degrees C. Salt rejection was also very high varying between 93-99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%

    The heats of formation of the haloacetylenes XCCY [X, Y = H, F, Cl]: basis set limit ab initio results and thermochemical analysis

    Full text link
    The heats of formation of haloacetylenes are evaluated using the recent W1 and W2 ab initio computational thermochemistry methods. These calculations involve CCSD and CCSD(T) coupled cluster methods, basis sets of up to spdfgh quality, extrapolations to the one-particle basis set limit, and contributions of inner-shell correlation, scalar relativistic effects, and (where relevant) first-order spin-orbit coupling. The heats of formation determined using W2 theory are: \hof(HCCH) = 54.48 kcal/mol, \hof(HCCF) = 25.15 kcal/mol, \hof(FCCF) = 1.38 kcal/mol, \hof(HCCCl) = 54.83 kcal/mol, \hof(ClCCCl) = 56.21 kcal/mol, and \hof(FCCCl) = 28.47 kcal/mol. Enthalpies of hydrogenation and destabilization energies relative to acetylene were obtained at the W1 level of theory. So doing we find the following destabilization order for acetylenes: FCCF >> ClCCF >> HCCF >> ClCCCl >> HCCCl >> HCCH. By a combination of W1 theory and isodesmic reactions, we show that the generally accepted heat of formation of 1,2-dichloroethane should be revised to -31.8±\pm0.6 kcal/mol, in excellent agreement with a very recent critically evaluated review. The performance of compound thermochemistry schemes such as G2, G3, G3X and CBS-QB3 theories has been analyzed.Comment: Mol. Phys., in press (E. R. Davidson issue

    Signals for Lorentz Violation in Post-Newtonian Gravity

    Get PDF
    The pure-gravity sector of the minimal Standard-Model Extension is studied in the limit of Riemann spacetime. A method is developed to extract the modified Einstein field equations in the limit of small metric fluctuations about the Minkowski vacuum, while allowing for the dynamics of the 20 independent coefficients for Lorentz violation. The linearized effective equations are solved to obtain the post-newtonian metric. The corresponding post-newtonian behavior of a perfect fluid is studied and applied to the gravitating many-body system. Illustrative examples of the methodology are provided using bumblebee models. The implications of the general theoretical results are studied for a variety of existing and proposed gravitational experiments, including lunar and satellite laser ranging, laboratory experiments with gravimeters and torsion pendula, measurements of the spin precession of orbiting gyroscopes, timing studies of signals from binary pulsars, and the classic tests involving the perihelion precession and the time delay of light. For each type of experiment considered, estimates of the attainable sensitivities are provided. Numerous effects of local Lorentz violation can be studied in existing or near-future experiments at sensitivities ranging from parts in 10^4 down to parts in 10^{15}.Comment: 46 pages two-column REVTeX, accepted in Physical Review

    Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes

    Get PDF
    The authors report the growth of AlGaN epilayers and deep ultraviolet (UV) light emitting diodes (LEDs) on bulk AlN substrates. Heteroepitaxial nucleation and strain relaxation are studied through controlled growth interruptions. Due to a low density of preexisting dislocations in bulk AlN, the compressive strain during AlGaN heteroepitaxy cannot be relieved effectively. The built-up of strain energy eventually induces either an elastic surface roughening or plastic deformation via generation and inclination of dislocations, depending on the stressor interlayers and growth parameters used. AlGaN LEDs on bulk AlN exhibit noticeable improvements in performance over those on sapphire, pointing to a promising substrate platform for III-nitride UV optoelectronics.open352

    What makes you not a Buddhist? : a preliminary mapping of values

    Get PDF
    This study sets out to establish which Buddhist values contrasted with or were shared by adolescents from a non-Buddhist population. A survey of attitude toward a variety of Buddhist values was fielded in a sample of 352 non-Buddhist schoolchildren aged between 13 and 15 in London. Buddhist values where attitudes were least positive concerned the worth of being a monk/nun or meditating, offering candles & incense on the Buddhist shrine, friendship on Sangha Day, avoiding drinking alcohol, seeing the world as empty or impermanent and Nirvana as the ultimate peace. Buddhist values most closely shared by non-Buddhists concerned the Law of Karma, calming the mind, respecting those deserving of respect, subjectivity of happiness, welfare work, looking after parents in old age and compassion to cuddly animals. Further significant differences of attitude toward Buddhism were found in partial correlations with the independent variables of sex, age and religious affiliation. Correlation patterns paralleled those previously described in theistic religions. Findings are applied to spiritual, moral, social and cultural development and for the teaching of religious to pupils of no faith adherence. The study recommends that quantitative psychometrics employed to conceptualize Buddhist values by discriminant validity in this study could be extended usefully to other aspects of the study of Buddhism, particularly in quest of validity in the conceptualization of Buddhist identity within specifically Buddhist populations

    Surface patterning of carbon nanotubes can enhance their penetration through a phospholipid bilayer

    Full text link
    Nanotube patterning may occur naturally upon the spontaneous self-assembly of biomolecules onto the surface of single-walled carbon nanotubes (SWNTs). It results in periodically alternating bands of surface properties, ranging from relatively hydrophilic to hydrophobic, along the axis of the nanotube. Single Chain Mean Field (SCMF) theory has been used to estimate the free energy of systems in which a surface patterned nanotube penetrates a phospholipid bilayer. In contrast to un-patterned nanotubes with uniform surface properties, certain patterned nanotubes have been identified that display a relatively low and approximately constant system free energy (10 kT) as the nanotube traverses through the bilayer. These observations support the hypothesis that the spontaneous self-assembly of bio-molecules on the surface of SWNTs may facilitate nanotube transduction through cell membranes.Comment: Published in ACS Nano http://pubs.acs.org/doi/abs/10.1021/nn102763

    Mirror Symmetry and Other Miracles in Superstring Theory

    Get PDF
    The dominance of string theory in the research landscape of quantum gravity physics (despite any direct experimental evidence) can, I think, be justified in a variety of ways. Here I focus on an argument from mathematical fertility, broadly similar to Hilary Putnam's 'no miracles argument' that, I argue, many string theorists in fact espouse. String theory leads to many surprising, useful, and well-confirmed mathematical 'predictions' - here I focus on mirror symmetry. These predictions are made on the basis of general physical principles entering into string theory. The success of the mathematical predictions are then seen as evidence for framework that generated them. I attempt to defend this argument, but there are nonetheless some serious objections to be faced. These objections can only be evaded at a high (philosophical) price.Comment: For submission to a Foundations of Physics special issue on "Forty Years Of String Theory: Reflecting On the Foundations" (edited by G. `t Hooft, E. Verlinde, D. Dieks and S. de Haro)

    Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny

    Get PDF
    The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors

    The nonlinear time-dependent response of isotactic polypropylene

    Full text link
    Tensile creep tests, tensile relaxation tests and a tensile test with a constant rate of strain are performed on injection-molded isotactic polypropylene at room temperature in the vicinity of the yield point. A constitutive model is derived for the time-dependent behavior of semi-crystalline polymers. A polymer is treated as an equivalent network of chains bridged by permanent junctions. The network is modelled as an ensemble of passive meso-regions (with affine nodes) and active meso-domains (where junctions slip with respect to their positions in the bulk medium with various rates). The distribution of activation energies for sliding in active meso-regions is described by a random energy model. Adjustable parameters in the stress--strain relations are found by fitting experimental data. It is demonstrated that the concentration of active meso-domains monotonically grows with strain, whereas the average potential energy for sliding of junctions and the standard deviation of activation energies suffer substantial drops at the yield point. With reference to the concept of dual population of crystalline lamellae, these changes in material parameters are attributed to transition from breakage of subsidiary (thin) lamellae in the sub-yield region to fragmentation of primary (thick) lamellae in the post-yield region of deformation.Comment: 29 pages, 12 figure
    corecore