9,533 research outputs found

    Neutron Stars with Bose-Einstein Condensation of Antikaons as MIT Bags

    Full text link
    We investigate the properties of an antikaon in medium, regarding itas a MIT bag. We first construct the MIT bag model for a kaon withσ\sigma^* and ϕ\phi in order to describe the interaction ofss-quarks in hyperonic matter in the framework of the modifiedquark-meson coupling model. The coupling constant gσBKg'^{B_K}_\sigmain the density-dependent bag constant B(σ)B(\sigma) is treated as afree parameter to reproduce the optical potential of a kaon in asymmetric matter and all other couplings are determined by usingSU(6) symmetry and the quark counting rule. With various values ofthe kaon potential, we calculate the effective mass of a kaon inmedium to compare it with that of a point-like kaon. We thencalculate the population of octet baryons, leptons and KK^- and theequation of state for neutron star matter. The results show thatkaon condensation in hyperonic matter is sensitive to the ss-quarkinteraction and also to the way of treating the kaon. The mass andthe radius of a neutron star are obtained by solving theTolmann-Oppenheimer-Volkoff equation.Comment: 14 figure

    Kaon Condensation in a Neutron Star under Strong Magnetic Fields by Using the Modified Quark-meson Coupling Model

    Full text link
    We have considered the antikaon condensation in a neutron star in the presence of strong magnetic fields by using the modified quark-meson coupling (MQMC) model. The structure of the neutron star is investigated with various magnetic fields and different kaon optical potentials, and the effects of the magnetic fields for kaon condensation is discussed. When employing strong magnetic fields inside a neutron star with hyperons and kaon condensation, the magnetic fields can cause the equation of state to be stiff; thus, a large maximum mass of the neutron star can be obtained.Comment: published in J. Korean Phys.So

    Effective mass theory of monolayer \delta-doping in the high-density limit

    Full text link
    Monolayer \delta-doped structures in silicon have attracted renewed interest with their recent incorporation into atomic-scale device fabrication strategies as source and drain electrodes and in-plane gates. Modeling the physics of \delta-doping at this scale proves challenging, however, due to the large computational overhead associated with ab initio and atomistic methods. Here, we develop an analytical theory based on an effective mass approximation. We specifically consider the Si:P materials system, and the limit of high donor density, which has been the subject of recent experiments. In this case, metallic behavior including screening tends to smooth out the local disorder potential associated with random dopant placement. While smooth potentials may be difficult to incorporate into microscopic, single-electron analyses, the problem is easily treated in the effective mass theory by means of a jellium approximation for the ionic charge. We then go beyond the analytic model, incorporating exchange and correlation effects within a simple numerical model. We argue that such an approach is appropriate for describing realistic, high-density, highly disordered devices, providing results comparable to density functional theory, but with greater intuitive appeal, and lower computational effort. We investigate valley coupling in these structures, finding that valley splitting in the low-lying \Gamma band grows much more quickly than the \Gamma-\Delta band splitting at high densities. We also find that many-body exchange and correlation corrections affect the valley splitting more strongly than they affect the band splitting

    Effective mass and decay of Θ+\Theta^+ in nuclear matter in quark-meson coupling model

    Full text link
    The in-medium mass of a \thetaplus, \mtheta^*, in cold symmetric nuclear matter is calculated by using the quark-meson coupling model. The Θ+\Theta^+ is treated as an MIT bag with the quark content uuddsˉuudd\bar s. Bag parameters for a free \thetaplus are fixed to reproduce the observed mass of the \thetaplus. In doing so, we use three different values of the ss-quark mass since the mass of the ss-quark is not well known. As usual, the strengths of the uu and dd quark couplings to σ\sigma- and ω\omega-meson fields are determined to fit the nuclear saturation properties. However, the coupling constant gσsg_\sigma^s between the ss-quark and the σ\sigma-meson cannot be fixed from the saturation properties, and thus we treat gσsg_\sigma^s as a free parameter and investigate how \mtheta^* depends on gσsg_\sigma^s. %\mtheta^* is calculated up to 2.5 times the nuclear saturation density, %and we find that We find that \mtheta^* depends significantly on the value of gσsg_\sigma^s but not on the mass of the ss-quark. Chemical potentials of the Θ+\Theta^+ and the K+NK+N system are calculated to discuss the decay of a Θ+\Theta^+ in nuclear matter. We calculate the effective mass of a kaon in nuclear matter in two ways; using the optical potential of KK^- in matter and using quark model. By comparing the effective masses calculated from these two methods, we find the magnitude of the real part of the optical potential that is consistent with the usual quark model is about 100 MeV.Comment: 16 pages, 4 figures, 3 table

    Singular Density of States of Disordered Dirac Fermions in the Chiral Models

    Get PDF
    The Dirac fermion in the random chiral models is studied which includes the random gauge field model and the random hopping model. We focus on a connection between continuum and lattice models to give a clear perspective for the random chiral models. Two distinct structures of density of states (DoS) around zero energy, one is a power-law dependence on energy in the intermediate energy range and the other is a diverging one at zero energy, are revealed by an extensive numerical study for large systems up to 250×250250\times 250. For the random hopping model, our finding of the diverging DoS within very narrow energy range reconciles previous inconsistencies between the lattice and the continuum models.Comment: 4 pages, 4 figure

    Field-driven topological glass transition in a model flux line lattice

    Full text link
    We show that the flux line lattice in a model layered HTSC becomes unstable above a critical magnetic field with respect to a plastic deformation via penetration of pairs of point-like disclination defects. The instability is characterized by the competition between the elastic and the pinning energies and is essentially assisted by softening of the lattice induced by a dimensional crossover of the fluctuations as field increases. We confirm through a computer simulation that this indeed may lead to a phase transition from crystalline order at low fields to a topologically disordered phase at higher fields. We propose that this mechanism provides a model of the low temperature field--driven disordering transition observed in neutron diffraction experiments on Bi2Sr2CaCu2O8{\rm Bi_2Sr_2CaCu_2O_8\, } single crystals.Comment: 11 pages, 4 figures available upon request via snail mail from [email protected]

    Quantized Rotation of Atoms From Photons with Orbital Angular Momentum

    Get PDF
    We demonstrate the coherent transfer of the orbital angular momentum of a photon to an atom in quantized units of hbar, using a 2-photon stimulated Raman process with Laguerre-Gaussian beams to generate an atomic vortex state in a Bose-Einstein condensate of sodium atoms. We show that the process is coherent by creating superpositions of different vortex states, where the relative phase between the states is determined by the relative phases of the optical fields. Furthermore, we create vortices of charge 2 by transferring to each atom the orbital angular momentum of two photons.Comment: New version, 4 pages and 3 figures, accepted for publication in Physical Review Letter
    corecore