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Singular density of states of disordered Dirac fermions in chiral models
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The Dirac fermion in the random chiral models is studied, which includes the random gauge field model and
the random hopping model. We focus on a connection between continuum and lattice models to give a clear
perspective for the random chiral models. Two distinct structures of density of states around zero energy, one
is a power-law dependence on energy in the intermediate energy range and the other is a peak at zero energy,
are revealed by an extensive numerical study for large systems up to 2503250. For the random hopping
model, the above findings reconcile previous inconsistencies between the lattice and the continuum models.
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Dimensionalities and symmetries play central roles
universalities in the Anderson localization problem. Mo
than two decades ago, Abrahams, Anderson, Licciarde
and Ramakrishnan1 presented the well-known scaling theor
predicting that electron wave functions always localize
one and two dimensions and metal-insulator transition occ
in three dimensions. However, even in two dimensions,
localized states are also marginally allowed to appear w
systems possess some special symmetries. For symmetr
is often convenient to borrow terminologies from the rand
matrix theory which was first introduced by Wigner an
Dyson. Recently, Altland and Zirnbauer2 have reported seve
new symmetry classes in connection with a mathemat
classification scheme of the Riemannian symmetric spac

Amongst these new symmetry classes, chiral models h
attracted much attention as a novel exception for the sca
theory. Compared to the conventional models where rand
ness enters as an on-site potential, it resides onlinks ~i.e., as
a gauge field! in chiral models. This type of randomness m
play important roles for the composite fermion theory
fractional quantum Hall effects and vortex states of di
superconductors. In view of the localization problem, mod
with this randomness have a special symmetry, referred
chiral symmetry, and thereby belong to a new universa
class.2 This symmetry is expected to affect localization pro
erties of the systems drastically.

Several chiral models on a lattice, which are conveni
for numerics, have been studied and interesting phy
around zero-energy has been revealed. The density of s
~DOS! of these models shows singularities at zero ene
and the corresponding wave functions exhibit a delocali
multifractal behavior. Examples of these include the Gad
model,3 the random flux model,4 and thep-flux model with
link disorders.5 These models, defined on a two-dimension
square lattice, have the chiral symmetry which is con
niently stated as$H,g%50, where g is a matrix which
changes the sign of wave functions on one of the sublatti
Consequently, for any realization of disorder, the ene
spectrum is invariant under the transformationE→2E.
Therefore, given an eigenstatec with energyE, gc is also
an eigenstate with energy2E. This symmetry is responsibl
for the existence of delocalized states at zero energy.
0163-1829/2001/65~3!/033301~4!/$20.00 65 0333
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Chiral models in a continuum space have also been inv
tigated extensively. Especially, models that include the Di
fermions have attracted interest. The Dirac fermion is a q
siparticle that appears in several interesting situations in c
densed matter physics such asd-wave superconductivity,
graphite sheets, gap-closing transitions in the quantum H
effect,6 the Chalker-Coddington network model,7 and the
mean field theory of thet-J model.8 Effects of randomness
are also of fundamental interest in these contexts. Si
many analytic approaches such as a field theoretic one
applicable for the Dirac fermion, several interesting resu
have been obtained so far. Among them, there exist sim
models that allow us to construct an explicit zero-mode wa
function for any realization of disorder.9 Due to this advan-
tage, it has been revealed that the zero-mode wave funct
are not localized and exhibit a multifractal behavior. Mor
over, there exists a transition in the multifractal spectrum10

and the density-density correlation11 as the disorder strengt
varied.

Although the delocalized multifractal nature of the exa
zero energy states has been well established now, our kn
edge for finite energy states, especially for DOS around ze
energy, is still in confusion. For example, a continuum mo
where the Dirac fermions feel random gauge fields was s
ied in Refs. 9 and 12, and it was found that DOS exhibit
power-law dependence on energy. On the other hand, a s
lar model with species doubling was studied in Ref. 13 an
diverging DOS was found. From the lattice point of view, t
corresponding model including Dirac fermions has not be
studied so far. However, the random flux model, a latt
model where flux is randomly distributed for each plaque
shows diverging DOS.14 A clear link between them is miss
ing.

Another example is the case where the Dirac fermion
subject to imaginary vector potentials. For this case, th
even exist inconsistent results between lattice and continu
models. Field theoretic studies13,15 predict diverging DOS at
zero energy for any randomness strength. However, a
merical result for the randomp-flux model, where a random
hopping amplitude act as an imaginary vector potent
shows that the DOS behaves as a power law with its ex
nent dependent on the disorder strength for we
randomness.5
©2001 The American Physical Society01-1
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In this paper, we make an attempt to clarify the relatio
ship between lattice models and continuum Dirac fermio
reconcile some inconsistent results in the previous stud
and thereby give a whole perspective for the localizat
problem of the two-dimensional~2D! chiral models. For
these purposes, we consider lattice models that recove
random Dirac fermions in the continuum limit. We focus o
DOS, especially around zero energy where quantum inte
ence plays an important role and fully quantum mechan
treatments are necessary. We use the transfer-matrix me
developed in Ref. 16. It allows us to handle large enou
systems up to 2503250, which is indispensable to give rel
able results for localization problems.

We realize Dirac fermions on a 2D square lattice via
p-flux model

Hpure5(̂
i j &

ci
†t i j

purecj1H.c.,

where t j 1 x̂, j
pure

5(21) j x, t j 1 ŷ, j
pure

51, and flux piercing a
plaquette is p. The energy spectrum is given b
E562Acos2kxa1cos2kya, wherek belongs to the magneti
Brillouin zone (2p/a,p/a#3(0,p/a# anda is a lattice con-
stant. In the continuum limita→0, this includes the doubled
massless Dirac fermions aroundk5(p/2a,p/2a) and
(2p/2a,p/2a). This realization is a minimum model for ou
purposes.

In the following, we will consider two types of disorde
which live on a link: the random gauge field and the rand
hopping. We implement the random gauge field as

t i j
rg5t i j

pureexp@ iaAi j #. ~1!

Taking a Coulomb gauge, we determine the random ga
field Ai j via a scalar potentialF on a dual lattice as
Aj 1 x̂, j 5(F j 1( x̂1 ŷ)/22F j 1( x̂2 ŷ)/2)/a,Aj 1 ŷ, j 52(F j 1( x̂1 ŷ)/2
2F j 2( x̂2 ŷ)/2)/a, where F is randomly chosen from a
simple Gaussian distributionP@F#}exp@2(a2/2g)(,ij.(Fi
2Fj)

2/a2#. In the continuum limit, this reduces toP@F#
}exp@2(1/2g)*d2x(¹F)2#, a natural choice for effective field
theoretic treatments. As stated above, this Hamiltonian p
sesses the chiral symmetry$H,g%50 due to the special na
ture of randomness. Note also that time-reversal invarianc
broken by the random magnetic flux.

In the continuum limit, the Hamiltonian is expressed as5,13

Hcont5E d2xC†S 0 D

D† 0 DC, ~2!

where Dª2 i ]xsx2 i ]ysy1Ax(x)sx1Ay(x)sy1M (x)sz
1V(x)1, s i 5x,y,z are the 232 Pauli matrices, andC is a
four-component spinor. The coefficientsAx , Ay , M, andV
are arbitrary complex fields. This is the most general ch
symmetric form of a Dirac Hamiltonian in a continuu
space. The chiral symmetry is, in the present basis, expre
as $H,sz^ 1%50. For the random gauge field mode
(Ax ,Ay) is real and serves as the random gauge field.
other coefficients,M andV, do not appear at the first order i
the lattice constanta, but they are nonzero for the lattic
models in general.
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For strong enough randomness, this model is natur
related to another lattice model, the random flux model.~By
the random flux model, we mean the model discus
in Refs. 4 and 14 which does not include Dirac fermion
while we simply call the model with Dirac fermions define
above as the random gauge field model.! To see this, note
that the spatial correlation of flux per plaquet
f iªa2D iF i is expressed aŝ f if j&5a4D iD jG(u i 2 j u),
whereG(u i 2 j u)ª^F iF j& is a lattice Green’s function forF
and D i is lattice Laplacian at a sitei. Taking a continuum
limit a→0, we find ^f if j&50 for finite au i 2 j u, i.e., the
spatial correlation of flux is short ranged. Moreover, f
strong enough randomness, lattice fermions do not ‘‘reme
ber’’ the original fluxp anymore, and we expect this mod
to exhibit a similar behavior to the random flux model whe
the flux for each plaquette is an independent random v
able.

An effective sigma model via supersymmetry~SUSY!
technique was studied in Ref. 13, predicting diverging DO
for a whole range of randomness strength. A similar mo
without species doublingH5*d2xC†@s•p1s•A#C has
also been studied9,12 and power-law DOS with a disorder
dependent exponent was proposed. On the other hand
random flux model, which is expected to be the strong r
domness limit of the present case, shows diverging DOS14

We also consider the case where fermions on a 2D sq
lattice withp flux per plaquette feel random hopping amp
tudes

t i j
rh5t i j

pure1dt i j , ~3!

where dt i j is a real random variable. As for a probabilit
distribution of dt, we consider a Gaussian distributio
P@dt#}exp@2(dt)2/2g2#.

In this case, (Ax ,Ay) in Eq. ~2! is purely imaginary, and
Dirac fermions are subject to an imaginary random gau
potential. Note that the total four-component Hamiltonian
Hermitian. Unlike the random gauge field model, tim
reversal symmetry is not broken for this model since we c
take all matrix elements to be real in the real space.

As is the case of the random gauge field model, t
model is connected to another lattice model for sufficien
strong randomness. For strong enough randomness, a
one expects that fermions no longer ‘‘remember’’ the origin
flux and show a similar behavior to that of the random ho
ping model without Dirac fermions.

Fukui15 studied the corresponding continuum model by
replica nonlinears model with a large number of fermion
flavors and proposed that DOS at zero energy diverges
delocalized states exist at the band center for any rand
ness strength. A one-loop renormalization group~RG! study
with SUSY method was also applied for this model in R
13, predicting diverging DOS at zero energy asr(E)
;(ER /E)e2cAln(ER /E), whereER is a constant andc depends
on randomness. A conjectural RG flow beyond one-loop
der was presented in Ref. 17 and similar results were
tained. The random hopping model without Dirac fermion
which we expect to be the strong randomness limit of
present model, also shows diverging DOS.3 On the other
1-2
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BRIEF REPORTS PHYSICAL REVIEW B 65 033301
hand, according to a numerical study for the correspond
lattice model, vanishing DOSr(E);uEua was observed with
a disorder-dependent exponenta.0 for weakrandomness.5

We reexamine this problem by the transfer-matrix metho
A quantity of interest we investigate numerically is th

random averaged DOS:^r(E)&ª^(1/L2)( id(Ei2E)&. For
the purep-flux model, the DOS vanishes linearly aroun
zero energy due to the relativistic dispersion of Dirac ferm
ons. Since for strong enough disorder, the present model
expected to exhibit similar properties to the random fl
model or the random hopping model without Dirac fermion
both of which exhibit divergent DOS at zero energy,3,14 a
natural question is how the vanishing DOS at zero ene
becomes divergent as we increase the disorder strengthg. It
should be contrasted to the cases without Dirac fermi
where the DOS of pure systems are already divergent at
energy due to the van Hove singularities of a cosine b
E52(coskxa1coskya).

First, we discuss the random gauge field model, i.e.,
p-flux model with a random gauge field as in Eq.~1!. In
Figs. 1 and 2, we present numerically calculated DOS
severalg. In the transfer matrix method, the Green’s functi
for a given energyE is calculated atE1 id. We chosed
;0.0120.0005, which gives us enough resolution of ener
We used a square geometry rather than a quasi
dimensional one since we are mainly interested in pur
two-dimensional properties.

As shown, there exist two structures. For over the w
range of the energy scale, the global feature of DOS chan
from V shaped to flat; the latter is characteristic of the ra
dom flux model as expected. In addition, if we look mo
precisely for the very small region around zero energy, th
exists another structure, i.e., a peak for sufficiently largeg.
Note that since we used a lattice with an even numbe
sites and adopted a periodic boundary condition, there is
exact zero-energy state, i.e., the peak found here is no
artifact by the special choice of boundary conditions. T
peak structure is expected to smoothly connect to the kn

FIG. 1. Density of states for thep-flux model with a random
gauge field on a 50350 lattice forg50.2–1.6~from bottom to top
at E50). The small imaginary part of energyd is 0.01. Quenched
averaging is taken over 30 samples.
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diverging DOS for the random flux model. The numeric
results found here are consistent with thes model study via
the SUSY technique in Ref. 13, where the divergence
DOS is predicted.

Now let us go on to thep-flux model with random hop-
ping amplitudes@Eq. ~3!#. Calculated DOS for systems up t
2503250 are shown in Figs. 3 and 4. Again, one recogni
two different structures as in the random gauge field mod
Away from zero energy, the DOS exhibits a power-law b
havior with a disorder-dependent exponent, as in Ref. 5.
whole DOS profile becomes divergent as the disor
strength increased, which is natural since the present m
is expected to show similar behavior to that of Gade’s mod
On the other hand, as is the case with the random gauge
model studied above, within a very narrow range near z
energy, there exists another structure. As the disor
strength increased, a sharp peak at zero energy devel

FIG. 2. Same as Fig. 1 on a 1003100 lattice forg50.1–1.8,
andd50.005, averaged over 40 samples. Inset: same as Fig. 1
2503250 lattice forg50.4,0.45,0.5, andd50.0005, averaged ove
50 samples.

FIG. 3. Density of states for the random hopping model on
50350 lattice forg50.3–0.7~from bottom to top atE50). The
small imaginary part of energyd is 0.01. Quenched averaging
taken over 30 samples.
1-3
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BRIEF REPORTS PHYSICAL REVIEW B 65 033301
when g reached about the order of the bandwidth. This
havior is independent of the global power-law profile aw
from the zero energy and before it turns divergent. Th
findings are consistent with the field theoretic analyses,
pecially with the SUSY approach where the divergence
the DOS is predicted and a power-law behavior appear
the intermediate region of the RG flow. We also investiga
the case wheredt is uniformly distributed in@2w/2,w/2#.
The results for this case are qualitatively similar to a Gau
ian distribution.

We should compare the present case to dirtyd-wave su-
perconductors, which also include Dirac fermions. Howev

FIG. 4. Same as Fig. 3 on a 1003100 lattice forg50.3–0.7,
and d50.005, averaged over 50 samples. Away from zero ene
(E.0.1) and for sufficiently weak randomness, data are fitted
power lawr(E)}uEua. Inset: same as Fig. 3 on a 2503250 lattice
for g50.5,0.51,0.52, andd50.0005, averaged over 70 samples.
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the underlying symmetry class is different in the rando
matrix theory.2 For dirty d-wave superconductors, all quas
particle states are found to be localized, and a small ene
scale around zero energy appears where quantum inte
ence effects produce several critical DOS profiles depend
on the details of randomness.18 This energy scale is deter
mined by the diffusion constant in the diffusive regime a
the localization length of quasiparticles.19 For the present
case, on the other hand, zero-energy states are deloca
due to the chiral symmetry, and quantum interference effe
give rise to diverging DOS at zero energy. The emergenc
a power-law behavior away from zero energy is, from t
effective field theory point of view, well described by th
intermediate regime of the RG flow.13

In conclusion, we have investigated the DOS of the ch
models where the chiral symmetry plays crucial roles for
existence of the delocalized states at zero energy. We con
ered the lattice counterparts of continuum models includ
the Dirac fermions, the random gauge field model and
random hopping model, which have been well studied
field theoretic methods. Large-scale calculations by the tra
fer matrix method up to 2503250 lattices revealed the exis
tence of the two distinct structures in the DOS: one is
power-law behavior in the intermediate energy range and
other is a peak at zero energy. Quantum interference p
crucial roles for these fine structures, which naive semic
sical treatments may miss. Our finding of the singular DO
at zero energy for the random hopping model reconciles
consistencies between lattice and continuum models and
establishes a clear connection between them.

We thank Y. Morita for fruitful discussions. The compu
tation in this work has been partly done at the YITP Co
puting Facility and at the Supercomputing Center, ISSP, U
versity of Tokyo.
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