57 research outputs found

    Electron correlation effects in electron-hole recombination in organic light-emitting diodes

    Get PDF
    We develop a general theory of electron--hole recombination in organic light emitting diodes that leads to formation of emissive singlet excitons and nonemissive triplet excitons. We briefly review other existing theories and show how our approach is substantively different from these theories. Using an exact time-dependent approach to the interchain/intermolecular charge-transfer within a long-range interacting model we find that, (i) the relative yield of the singlet exciton in polymers is considerably larger than the 25% predicted from statistical considerations, (ii) the singlet exciton yield increases with chain length in oligomers, and, (iii) in small molecules containing nitrogen heteroatoms, the relative yield of the singlet exciton is considerably smaller and may be even close to 25%. The above results are independent of whether or not the bond-charge repulsion, X_perp, is included in the interchain part of the Hamiltonian for the two-chain system. The larger (smaller) yield of the singlet (triplet) exciton in carbon-based long-chain polymers is a consequence of both its ionic (covalent) nature and smaller (larger) binding energy. In nitrogen containing monomers, wavefunctions are closer to the noninteracting limit, and this decreases (increases) the relative yield of the singlet (triplet) exciton. Our results are in qualitative agreement with electroluminescence experiments involving both molecular and polymeric light emitters. The time-dependent approach developed here for describing intermolecular charge-transfer processes is completely general and may be applied to many other such processes.Comment: 19 pages, 11 figure

    Grain-size properties and organic-carbon stock of Yedoma Ice Complex permafrost from the Kolyma lowland, northeastern Siberia

    Get PDF
    The organic carbon stock in permafrost is of increasing interest in environmental research, because during the late Quaternary a large pool of organic carbon accumulated in the sedimentary deposits of arctic permafrost. Because of its potential to degrade and release organic carbon, the organic-matter inventory of Yedoma Ice Complex deposits is relevant to current concerns about the effects of global warming. In this context, it is essential to improve the understanding of preserved carbon quantities and characteristics. The paper aims to clarify the Yedoma Ice Complex origin, and to develop an approach for volumetric organic-matter quantification. Therefore, we analyzed the grain size and the organic-matter characteristics of the deposits exposed at the stratigraphic key site Duvanny Yar (lower Kolyma River, northeast Siberia). A distinct bimodal grain-size distribution confirms a polygenetic origin of the frozen sediments from a flood-plain environment. The total organic-carbon content averages 1.5 ± 1.4 wt% while the volumetric organic-carbon content averages 14 ± 8 kg/m³. However, large-scale extrapolations for Yedoma Ice Complex deposits in general are not reasonable yet because of their rather unclear spatial distribution. We conclude that Yedoma Ice Complex formation at Duvanny Yar was dominated by water-related (alluvial/fluvial/lacustrine) as well as aeolian processes. The total organic-carbon content of the studied deposits is low if compared to other profiles, but it is still a significant pool

    Geological and geomorphological evolution of a sedimentary periglacial landscape in Northeast Siberia during the Late Quaternary

    Get PDF
    A wide variety of environmental records is necessary for analysing and understanding the complex Late Quaternary dynamics of permafrost-dominated Arctic landscapes. A NE Siberian periglacial key region was studied in detail using sediment records, remote sensing data, and terrain modelling, all incorporated in a geographical information system (GIS). The study area consists of the Bykovsky Peninsula and the adjacent Khorogor Valley in the Kharaulakh Ridge situated a few kilometres southeast of the LenaDelta. In this study a comprehensive cryolithological database containing information from 176 sites was compiled. The information from these sites is based on the review of previously published borehole data, outcrop profiles, surface samples, and our own field data. These archives cover depositional records of three periods: from Pliocene to Early Pleistocene, the Late Pleistocene and the Holocene. The main sediment sequences on the Bykovsky Peninsula consist of up to 50 m thick ice-rich permafrost deposits (Ice Complex) that were accumulated during the Late Pleistocene. They were formed as a result of nival processes around extensive snowfields in the Kharaulakh Ridge, slope processes (in relatively steep areas such as the Khorogor Valley), and alluvial/proluvial sedimentation in a flat accumulation plain dominated by polygonal tundra in the mountain foreland (Bykovsky Peninsula). During the early to middle Holocene warming, a general landscape transformation occurred from an extensive Late Pleistocene accumulation plain to a strongly thermokarst-dominated relief dissected by numerous depressions. Thermokarst subsidence had an enormous influence on the periglacial hydrological patterns, the sediment deposition, and on the composition and distribution of habitats. Climate deterioration, lake drainage, and talik refreezing occurred during the middle to late Holocene. The investigated region was reached by the post-glacial sea level rise during the middle Holocene, triggering thermo-abrasion of ice-rich coasts and the marine inundation of thermokarst depressions
    corecore