6,728 research outputs found
Running coupling constant of ten-flavor QCD with the Schr\"odinger functional method
Walking technicolor theory attempts to realize electroweak symmetry breaking
as the spontaneous chiral symmetry breakdown caused by the gauge dynamics with
slowly varying gauge coupling constant and large mass anomalous dimension.
Many-flavor QCD is one of the candidates owning these features. We focus on the
SU(3) gauge theory with ten flavors of massless fermions in the fundamental
representation, and compute the gauge coupling constant in the Schr\"odinger
functional scheme. Numerical simulation is performed with -unimproved
lattice action, and the continuum limit is taken in linear in lattice spacing.
We observe evidence that this theory possesses an infrared fixed point.Comment: 28 pages, 6 figures. v2) remarks on the continuum limit added,
analysis simplified and done with more statistics, conclusion unchanged,
version accepted for publication in PR
Effects of carbon incorporation on doping state of YBa2Cu3Oy
Effects of carbon incorporation on the doping state of YBa2Cu3Oy (Y-123) were
investigated. Quantitative carbon analysis revealed that carbon could be
introduced into Y-123 from both the precursor and the sintering gas. Nearly
carbon-free (< 200 ppm) samples were prepared from a vacuum-treated precursor
by sintered at 900 ˚C and cooling with 20 ˚C /min in flowing oxygen
gas. The lower Tc (= 88 K) and higher oxygen content (y = 6.98) strongly
suggested the overdoping state, which was supported by the temperature
dependence of resisitivity and thermoelectric power. The nuclear quadrapole
resonance spectra and the Raman scattering spectra indicated that there was
almost no oxygen defect in the Cu-O chain in these samples. On the other hand,
in the same cooling condition, the samples sintered in air stayed at optimal
doping level with Tc = 93 K, and the intentionally carbon-doped sample was in
the underdoping state. It is revealed that about 60% of incorporated carbon was
substituted for Cu at the chain site in the form of CO32+, and the rest remains
at the grain boundary as carbonate impurities. Such incorporation affected the
oxygen absorption process in Y-123. It turned out that the oxygen content in
Y-123 cannot be controlled only by the annealing temperature and the oxygen
partial pressure but also by the incorporated carbon concentration.Comment: 16pages, 9figure
Compound basis arising from the basic -module
A new basis for the polynomial ring of infinitely many variables is
constructed which consists of products of Schur functions and Q-functions. The
transition matrix from the natural Schur function basis is investigated.Comment: 12 page
Evaluating regional emission estimates using the TRACE-P observations
Measurements obtained during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) experiment are used in conjunction with regional modeling analysis to evaluate emission estimates for Asia. A comparison between the modeled values and the observations is one method to evaluate emissions. Based on such analysis it is concluded that the inventory performs well for the light alkanes, CO, ethyne, SO2, and NOₓ. Furthermore, based on model skill in predicting important photochemical species such as O₃, HCHO, OH, HO₂, and HNO₃, it is found that the emissions inventories are of sufficient quality to support preliminary studies of ozone production. These are important finding in light of the fact that emission estimates for many species (such as speciated NMHCs and BC) for this region have only recently been estimated and are highly uncertain. Using a classification of the measurements built upon trajectory analysis, we compare observed species distributions and ratios of species to those modeled and to ratios estimated from the emissions inventory. It is shown that this technique can reconstruct a spatial distribution of propane/benzene that looks remarkably similar to that calculated from the emissions inventory. A major discrepancy between modeled and observed behavior is found in the Yellow Sea, where modeled values are systematically underpredicted. The integrated analysis suggests that this may be related to an underestimation of emissions from the domestic sector. The emission is further tested by comparing observed and measured species ratios in identified megacity plumes. Many of the model derived ratios (e.g., BC/CO, SOₓ/C₂H₂) fall within ∼25% of those observed and all fall outside of a factor of 2.5. (See Article file for details of the abstract.)Department of Civil and Environmental EngineeringAuthor name used in this publication: Wang, T
Asian dust outflow in the PBL and free atmosphere retrieved by NASA CALIPSO and an assimilated dust transport model
International audienceThree-dimensional structures of Asian dust transport in the planetary boundary layer (PBL) and free atmosphere occurring successively during the end of May 2007 were clarified using results of space-borne backscatter lidar, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and results simulated using a data-assimilated version of a dust transport model (RC4) based on a ground-based NIES lidar network. Assimilated results mitigated overestimation of dust concentration by reducing 17.4% of dust emissions and improved the root mean square difference (RMSD) of dust AOT between the model and NIES lidar by 31.2?66.9%. The dust layer depths, vertical and horizontal structure simulated by RC4 agreed with CALIOP from the dust source region to a long-range downwind region for which 3-D distribution of dust clouds had not been clarified previously. Based on CALIOP and RC4, two significant transport mechanisms of Asian dust in the PBL and free atmosphere were clarified: a low level dust outbreak within the dry slot region of a well developed low-pressure system, and formation of an elevated dust layer within the warm sector of a low-pressure system. Finally, the aging of pure dust particles was investigated using the particle depolarization ratio (PDR) at 532 nm and the color ratio (CR) at 1064 nm and 532 nm for the low-altitude dust transport case. Aerosols with high PDR were observed uniformly over the dust source region. As the dust cloud was transported to the eastern downwind regions, aerosols with low PDR and high CR were found in the layer of less than 1 km height, suggesting changes from the external to internal mixing state of spherical aerosols and dust in the surface layer
- …
