1,630 research outputs found

    Synthesis and properties of novel bis(1,3-benzodithiolium)-type dications containing a biaryl unit: New redox systems undergoing reversible structural changes by electron transfer

    Get PDF
    In order to develop new redox systems which undergo reversible structural changes by electron transfer, bis(1,3-benzodithiolium)-type dications (5 21) containing a biaryl unit have been synthesized by hydride abstraction of the corresponding bis(1,3-benzodithiol-2-yl)biaryis (8). Reduction of 5 2, with zinc gave the corresponding intramolecular cyclization products (6), which reverted to 5(2+) by oxidation. Cyclic voltammetry also showed the efficient interconversion between both states. X-Ray analyses revealed that the twist angle of the biaryl unit decreases largely by reductive intramolecular cyclization.ArticleHETEROCYCLES. 69(1): 365 (2006)journal articl

    A New Experimental Approach to Evaluate Plasma-induced Damage in Microcantilever

    Full text link
    Plasma  etching,  during  micro-fabrication  processing  is  indispensable  for  fabricating  MEMS  structures.  During  the plasma  processes,  two  major matters,  charged  ions  and  vacuum–ultraviolet  (VUV)  irradiation  damage,  take  charge  of reliability  degradation.  The  charged  ions  induce  unwanted  sidewall  etching,  generally  called  as  “notching”,  which causes  degradation  in  brittle  strength.  Furthermore,  the  VUV  irradiation  gives  rise  to  crystal  defects  on  the  etching surface.  To  overcome  the  problem,  neutral  beam  etching  (NBE),  which  use  neutral  particles  without  the  VUV irradiation,  has  been  developed.  In  order  to  evaluate  the  effect  of  the  NBE  quantitatively,  we  measured  the  resonance property of a micro-cantilever before and after NBE treatment. The thickness of damage layer (δ) times the imaginary part  of  the  complex  Young's  modulus  (Eds)  were  then  compared,  which  is  a  parameter  of  surface  damage.  Although plasma processes  make the initial surface of cantilevers damaged during their fabrication, the removal of that damage by NBE was confirmed as the reduction in δEds. NBE will realize a damage-free surface for microstructures

    Potential Role of Protein Kinase B in Insulin-induced Glucose Transport, Glycogen Synthesis, and Protein Synthesis

    Get PDF
    Various biological responses stimulated by insulin have been thought to be regulated by phosphatidylinosi-tol 3-kinase, including glucose transport, glycogen syn-thesis, and protein synthesis. However, the molecular link between phosphatidylinositol 3-kinase and these biological responses has been poorly understood. Re-cently, it has been shown that protein kinase B (PKB/c-Akt/ Rac) lies immediately downstream from phosphati-dylinositol 3-kinase. Here, we show that expression of a constitutively active form of PKB induced glucose up-take, glycogen synthesis, and protein synthesis in L6 myotubes downstream of phosphatidylinositol 3-kinase and independent of Ras and mitogen-activated protein kinase activation. Introduction of constitutively active PKB induced glucose uptake and protein synthesis but not glycogen synthesis in 3T3L-1 adipocytes, which lack expression of glycogen synthase kinase 3 different from L6 myotubes. Furthermore, we show that deactivation of glycogen synthase kinase 3 and activation of rapamy-cin- sensitive serine/threonine kinase by PKB in L6 myo-tubes might be involved in the enhancement of glycogen synthesis and protein synthesis, respectively. These re-sults suggest that PKB acts as a key enzyme linking phosphatidylinositol 3-kinase activation to multiple bi-ological functions of insulin through regulation of downstream kinases in skeletal muscle, a major target tissue of insulin
    corecore