298 research outputs found

    The effects of pressure dependent constitutive model to simulate concrete structures failure under impact loads

    Get PDF
    The main objective of this paper is to explore the effect of confining pressure in the compression and tension zone by simulating the behaviour of reinforced concrete/mortar structures subjected to the impact load. The analysis comprises the numerical simulation of the influences of high mass low speed impact weight dropping on concrete structures, where the analyses are incorporated with meshless method namely as Smoothed Particle Hydrodynamics (SPH) method. The derivation of the plastic stiffness matrix of Drucker-Prager (DP) that extended from Von-Mises (VM) yield criteria to simulate the concrete behaviour were presented in this paper. In which, the displacements for concrete/mortar structures are assumed to be infinitesimal. Furthermore, the influence of the different material model of DP and VM that used numerically for concrete and mortar structures are also discussed. Validation upon existing experimental test results is carried out to investigate the effect of confining pressure, it is found that VM criterion causes unreal impact failure (flexural cracking) of concrete structures

    Adverse prognosis of epigenetic inactivation in RUNX3 gene at 1p36 in human pancreatic cancer

    Get PDF
    Alteration in transforming growth factor-β signalling pathway is one of the main causes of pancreatic cancer. The human runt-related transcription factor 3 gene (RUNX3) is an important component of this pathway. RUNX3 locus 1p36 is commonly deleted in a variety of human cancers, including pancreatic cancer. Therefore, we examined genetic and epigenetic alterations of RUNX3 in human pancreatic cancer. Thirty-two patients with pancreatic cancer were investigated in this study. We examined the methylation status of RUNX3 promoter region, loss of heterozygosity (LOH) at 1p36, and conducted a mutation analysis. The results were compared with clinicopathological data. Promoter hypermethylation was detected in 20 (62.5%) of 32 pancreatic cancer tissues, confirmed by sequence of bisulphite-treated DNA. Loss of heterozygosity was detected in 11 (34.3%) of 32 pancreatic cancers. In comparison with clinicopathological data, hypermethylation showed a relation with a worse prognosis (P=0.0143). Hypermethylation and LOH appear to be common mechanisms for inactivation of RUNX3 in pancreatic cancer. Therefore, RUNX3 may be an important tumour suppressor gene related to pancreatic cancer

    Sex- and Age-Related Differences in Morbidity Rates of 2009 Pandemic Influenza A H1N1 Virus of Swine Origin in Japan

    Get PDF
    BACKGROUND: The objective of the present study was to determine whether the morbidity rates of the 2009 pandemic influenza A H1N1 virus (pdmH1N1) varied by age and/or sex. METHODS AND FINDINGS: Retrospective analysis of 2,024,367 cases of pdmH1N1 was performed using the national surveillance data from influenza sentinel points in Japan. The male-to-female morbidity ratios (M/F ratios) in nineteen age groups were estimated as the primary outcome. The M/F ratios for pdmH1N1 influenza were: >1 in age groups <20 years and ≥80 years (p<0.001); <1 in age groups 20-79 years (p<0.001). This data suggests that males <20 years of age may be more likely to suffer from pdmH1N1 influenza than females in the same age categories. When the infection pattern for pdmH1N1 was compared with that of seasonal influenza outbreaks between 2000 and 2008, the M/F ratio for pdmH1N1 influenza was higher in ages 3-29 years and lower in ages 40-79 years. Because the present study was based on the national surveillance, it was impossible to estimate the morbidity rate for the Japanese population. It is also likely that the data did not capture asymptomatic or mild infections. CONCLUSIONS: Although exposure to the pdmH1N1 virus is assumed to be similar in both boys and girls, M/F ratios were >1 in those younger than 20 years. The subsequent reversal of the M/F ratio in the adult generation could be due to several possibilities, including: greater immunity among adult males, more asymptomatic infections among males, less reporting of illness by males, or differences in exposure to the virus and probability of visiting a clinic. These results suggest that the infection and virulence patterns of pdmH1N1 are more complex than previously considered

    The Cytosolic Protein G0S2 Maintains Quiescence in Hematopoietic Stem Cells

    Get PDF
    Bone marrow hematopoietic stem cells (HSCs) balance proliferation and differentiation by integrating complex transcriptional and post-translational mechanisms regulated by cell intrinsic and extrinsic factors. We found that transcripts of G0/G1 switch gene 2 (G0S2) are enriched in lineage− Sca-1+ c-kit+ (LSK) CD150+ CD48− CD41− cells, a population highly enriched for quiescent HSCs, whereas G0S2 expression is suppressed in dividing LSK CD150+ CD48− cells. Gain-of-function analyses using retroviral expression vectors in bone marrow cells showed that G0S2 localizes to the mitochondria, endoplasmic reticulum, and early endosomes in hematopoietic cells. Co-transplantation of bone marrow cells transduced with the control or G0S2 retrovirus led to increased chimerism of G0S2-overexpressing cells in femurs, although their contribution to the blood was reduced. This finding was correlated with increased quiescence in G0S2-overexpressing HSCs (LSK CD150+ CD48−) and progenitor cells (LS−K). Conversely, silencing of endogenous G0S2 expression in bone marrow cells increased blood chimerism upon transplantation and promoted HSC cell division, supporting an inhibitory role for G0S2 in HSC proliferation. A proteomic study revealed that the hydrophobic domain of G0S2 interacts with a domain of nucleolin that is rich in arginine-glycine-glycine repeats, which results in the retention of nucleolin in the cytosol. We showed that this cytosolic retention of nucleolin occurs in resting, but not proliferating, wild-type LSK CD150+ CD48− cells. Collectively, we propose a novel model of HSC quiescence in which elevated G0S2 expression can sequester nucleolin in the cytosol, precluding its pro-proliferation functions in the nucleolus

    Frequent reduced expression of alpha-1B-adrenergic receptor caused by aberrant promoter methylation in gastric cancers

    Get PDF
    Recent studies have suggested that epigenetic inactivation of tumour-related genes by promoter methylation participates in the development of gastric cancer. We newly identified the frequently aberrant promoter methylation of alpha-1B-adrenergic receptor (ADRA1B) in colorectal cancer by methylation-sensitive representational difference analysis (MS-RDA) and examined the methylation status of the ADRA1B promoter in 34 paired samples of colorectal cancer and surrounding epithelial tissue, and 34 paired samples of gastric cancer and surrounding epithelial tissue. In colorectal cancers, only four of 34 (11.8%) tumours showed ADRA1B promoter methylation. In contrast, ADRA1B promoter methylation was detected in 24 of 34 (70.6%) gastric cancers and in 14 of 34 (41.2%) surrounding epithelial tissues. The frequency of ADRA1B promoter methylation was higher in gastric epithelial tissues with intestinal metaplasia (41.6%) than in those without intestinal metaplasia (25.0%). Reverse transcription–PCR detected reduced ADRA1B expression in 12 of 18 (66.7%) gastric cancers, and its promoter methylation was detected in 11 of these 12 (91.7%) gastric cancers with reduced ADRA1B expression. Thus, ADRA1B promoter is frequently methylated in gastric cancer. Our results suggest that the ADRA1B gene is an important tumour-related gene frequently involved in the development and progression of gastric cancer

    Photolysis of a caged peptide reveals rapid action of NSF prior to neurotransmitter release

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 105 (2008): 347-352, doi:10.1073/pnas.0707197105.The time at which the N-ethylmaleimide-sensitive factor (NSF) acts during synaptic vesicle trafficking was identified by time-controlled perturbation of NSF function with a photo-activatable inhibitory peptide. Photolysis of this caged peptide in the squid giant presynaptic terminal caused an abrupt (0.2 s) slowing of the kinetics of the postsynaptic current (PSC) and a more gradual (2-3 s) reduction in PSC amplitude. Based on the rapid rate of these inhibitory effects relative to the speed of synaptic vesicle recycling, we conclude that NSF functions in reactions that immediately precede neurotransmitter release. Our results indicate the locus of SNARE protein recycling in presynaptic terminals and reveal a new target for rapid regulation of transmitter release.T.K. was supported by a Grass Fellowship in Neuroscience, an HFSP long-term fellowship and the Feodor-Lynen Program of the Alexander von Humboldt Foundation. Y.L. received a American Heart Association predoctoral fellowship. The research also was supported by NIH NS-21624

    Cyclin A1 promoter hypermethylation in human papillomavirus-associated cervical cancer

    Get PDF
    BACKGROUND: The aim of this study was to evaluate epigenetic status of cyclin A1 in human papillomavirus-associated cervical cancer. Y. Tokumaru et al., Cancer Res 64, 5982-7 (Sep 1, 2004)demonstrated in head and neck squamous-cell cancer an inverse correlation between cyclin A1 promoter hypermethylation and TP53 mutation. Human papillomavirus-associated cervical cancer, however, is deprived of TP53 function by a different mechanism. Therefore, it was of interest to investigate the epigenetic alterations during multistep cervical cancer development. METHODS: In this study, we performed duplex methylation-specific PCR and reverse transcriptase PCR on several cervical cancer cell lines and microdissected cervical cancers. Furthermore, the incidence of cyclin A1 methylation was studied in 43 samples of white blood cells, 25 normal cervices, and 24, 5 and 30 human papillomavirus-associated premalignant, microinvasive and invasive cervical lesions, respectively. RESULTS: We demonstrated cyclin A1 methylation to be commonly found in cervical cancer, both in vitro and in vivo, with its physiological role being to decrease gene expression. More important, this study demonstrated that not only is cyclin A1 promoter hypermethylation strikingly common in cervical cancer, but is also specific to the invasive phenotype in comparison with other histopathological stages during multistep carcinogenesis. None of the normal cells and low-grade squamous intraepithelial lesions exhibited methylation. In contrast, 36.6%, 60% and 93.3% of high-grade squamous intraepithelial lesions, microinvasive and invasive cancers, respectively, showed methylation. CONCLUSION: This methylation study indicated that cyclin A1 is a potential tumor marker for early diagnosis of invasive cervical cancer
    corecore