92 research outputs found
Deep-sea borehole seismological observatories in the western Pacific: temporal variation of seismic noise level and event detection
Seismological networks provide critical data for better understanding the dynamics of the Earth; however, a great limitation on existing networks is the uneven distribution of stations. In order to achieve a more uniform distribution of seismic stations, observatories must be
constructed in marine areas. The best configuration for oceanic seismic observatories is thought to be placement of seismometers in deep boreholes. Two deep-sea borehole seismological observatories (WP-1 and WP-2) were constructed in the western Pacific and form the initial
installations of a 1000 km span network. At present, seismic records of more than 400 total days were retrieved from both the WP-1 and WP-2. Long-term variations in broadband seismic noise spectra (3mHz - 10 Hz) in the western Pacific were revealed from these records, and the data showed that ambient seismic noise levels in borehole observatories are comparable to those of the quietest land seismic stations. In addition, there is little temporal variation of noise levels in
periods greater than 10 seconds. Due to this low seismic noise environment, many teleseismic events with magnitudes greater than 5 were recorded. It is confirmed that seismic observation in deep-sea borehole gives the best environment for earthquake observation in marine areas
GEMS: the opportunity for stress-forecasting all damaging earthquakes worldwide
A new understanding of rock deformation allows the accumulation of stress before earthquakes to be monitored by using shear-wave splitting to assess stress-induced changes to microcrack geometry. Using swarms of small earthquakes as the source of shear-waves, such stress accumulations have been recognised with hindsight before some fifteen earthquakes worldwide. On one occasion the time, magnitude, and fault-break of an M 5 earthquake was successfully stress-forecast in a comparatively narrow magnitude/time window. However, suitable swarms of small earthquakes are very uncommon, and routine forecasting requires measurements of controlled-source observations at bore-hole Stress-Monitoring Sites (SMSs). A prototype SMS confirmed that both science and technology are effective for monitoring stress changes before earthquakes, and the sensitivity is such that a network of SMSs, on a 400 km-grid, say, could stress-forecast all M ≥ 5 earthquakes, that is all damaging earthquakes, within the grid. This paper suggests that a Global Earthquake Monitoring System (GEMS) could forecast all damaging earthquakes in both developing and developed countries worldwide
The bends on a quantum waveguide and cross-products of Bessel functions
A detailed analysis of the wave-mode structure in a bend and its
incorporation into a stable algorithm for calculation of the scattering matrix
of the bend is presented. The calculations are based on the modal approach. The
stability and precision of the algorithm is numerically and analytically
analysed. The algorithm enables precise numerical calculations of scattering
across the bend. The reflection is a purely quantum phenomenon and is discussed
in more detail over a larger energy interval. The behaviour of the reflection
is explained partially by a one-dimensional scattering model and heuristic
calculations of the scattering matrix for narrow bends. In the same spirit we
explain the numerical results for the Wigner-Smith delay time in the bend.Comment: 34 pages, 21 figure
The population biology of the living coelacanth studied over 21Â years
Between 1986 and 2009 nine submersible and
remote-operated vehicle expeditions were carried out to
study the population biology of the coelacanth Latimeria
chalumnae in the Comoro Islands, located in the western
Indian Ocean. Latimeria live in large overlapping home
ranges that can be occupied for as long as 21 years. Most
individuals are confined to relatively small home ranges,
resting in the same caves during the day. One hundred and
forty five coelacanths are individually known, and we
estimate the total population size of Grande Comore as
approximately 300–400 adult individuals. The local population
inhabiting a census area along an 8-km section of
coastline remained stable for at least 18 years. Using
LASER-assisted observations, we recorded length frequencies
between 100 and 200 cm total length and did not
encounter smaller-bodied individuals (\100 cm total
length). It appears that coelacanth recruitment in the
observation areas occur mainly by immigrating adults. We
estimate that the mean numbers of deaths and newcomers
are 3–4 individuals per year, suggesting that longevity may
exceed 100 years. The domestic fishery represents a threat
to the long-term survival of coelacanths in the study area.
Recent changes in the local fishery include a decrease in
the abundance of the un-motorized canoes associated with
exploitation of coelacanths and an increase in motorized
canoes. Exploitation rates have fallen in recent years, and
by 2000, had fallen to lowest ever reported. Finally, future
fishery developments are discussed
- …