1,151 research outputs found

    InP solid state detector and the observation of low energy solar neutrinos

    Get PDF
    A large volume radiation detectors using a semi-insulating Indium Phosphide (InP) wafer have been developed for Indium Project on Neutrino Observation for Solar interior (IPNOS) experiment. The volume has achieved to 20mm3 , and this is world largest size among the detector observed gammas at hundred keV region. Although the depletion layer, most of charge are generated by an induction, and the charge collection efficiency achieves 50 to 60%, which is determined by the detector thickness and the carrier drift length (Ld = 120μm). The energy resolution is obtained by 25%. We measured actual backgrounds from 115 In beta decay, and also the effect of radiative Bremsstrahlung from those betas. No significant event was found in the measurement and the radiation such as Bremsstrahlung from InP detector could be negligible

    Mouse models for studying prostate cancer bone metastasis.

    Get PDF
    Once tumor cells metastasize to the bone, the prognosis for prostate cancer patients is generally very poor. The mechanisms involved in bone metastasis, however, remain elusive, because of lack of relevant animal models. In this manuscript, we describe step-by-step protocols for the xenograft mouse models that are currently used for studying prostate cancer bone metastasis. The different routes of tumor inoculation (intraosseous, intracardiac, intravenous and orthotopic) presented are useful for exploring the biology of bone metastasis

    Lattice QCD calculation of the proton decay matrix element in the continuum limit

    Get PDF
    We present a quenched lattice QCD calculation of the \alpha and \beta parameters of the proton decay matrix element. The simulation is carried out using the Wilson quark action at three values of the lattice spacing in the range a\approx 0.1-0.064 fm to study the scaling violation effect. We find only mild scaling violation when the lattice scale is determined by the nucleon mass. We obtain in the continuum limit, |\alpha(NDR,2GeV)|=0.0090(09)(^{+5}_{-19})GeV^3 and |\beta(NDR,2GeV)|=0.0096(09)(^{+6}_{-20})GeV^3 with \alpha and \beta in a relatively opposite sign, where the first error is statistical and the second is due to the uncertainty in the determination of the physical scale.Comment: 4 pages, 3 figure

    Effect of defect length on rolling contact fatigue crack propagation in high strength steel

    Get PDF
    The objective of the present paper is to clarify the effect of defect length in depth direction on rolling contact fatigue (RCF) crack propagation in high strength steel. RCF test and synchrotron radiation micro computed tomography (SR micro CT) imaging were conducted. In the case of the defect with the 15 ?m diameter, flaking life decreased with increasing defect length. In a comparison of the CT image and the SEM view, the shapes of defects and the locations of the horizontal cracks were almost the same respectively. The mechanism of RCF crack propagation was discussed by finite element (FE) analysis. Defects led to higher tensile residual stress than that without defects in the region where the defect exists. The shear stress range at 0.1 mm in depth on the middle line of the defect and the range of mode II stress intensity factor at the bottom of a vertical crack increased with increasing defect length.&nbsp

    Minimal Trinification

    Full text link
    We study the trinified model, SU(3)_C x SU(3)_L x SU(3)_R x Z_3, with the minimal Higgs sector required for symmetry breaking. There are five Higgs doublets, and gauge-coupling unification results if all five are at the weak scale, without supersymmetry. The radiative see-saw mechanism yields sub-eV neutrino masses, without the need for intermediate scales, additional Higgs fields, or higher-dimensional operators. The proton lifetime is above the experimental limits, with the decay modes p -> \bar\nu K^+ and p -> \mu^+ K^0 potentially observable. We also consider supersymmetric versions of the model, with one or two Higgs doublets at the weak scale. The radiative see-saw mechanism fails with weak-scale supersymmetry due to the nonrenormalization of the superpotential, but operates in the split-SUSY scenario.Comment: 23 pages, uses axodra

    A low energy optimization of the CERN-NGS neutrino beam for a theta_{13} driven neutrino oscillation search

    Full text link
    The possibility to improve the CERN to Gran Sasso neutrino beam performances for theta_{13} searches is investigated. We show that by an appropriate optimization of the target and focusing optics of the present CNGS design, we can increase the flux of low energy neutrinos by about a factor 5 compared to the current tau optimized focalisation. With the ICARUS 2.35 kton detector at LNGS and in case of negative result, this would allow to improve the limit to sin^22 theta_{13} by an order of magnitude better than the current limit of CHOOZ at Delta m^2 approximately 3 times 10^{-3} eV^2 within 5 years of nominal CNGS running. This is by far the most sensitive setup of the currently approved long-baseline experiments and is competitive with the proposed JHF superbeam.Comment: 19 pages, 8 figure

    Weak and Electromagnetic Nuclear Decay Signatures for Neutrino Reactions in SuperKamiokande

    Full text link
    We suggest the study of events in the SuperKamiokande neutrino data due to charged- and neutral-current neutrino reactions followed by weak and/or electromagnetic decays of struck nuclei and fragments thereof. This study could improve the prospects of obtaining evidence for τ\tau production from νμ→ντ\nu_\mu \to \nu_\tau oscillations and could augment the data sample used to disfavor νμ→νsterile\nu_\mu \to \nu_{sterile} oscillations.Comment: 7 pages, latex, to appear in Phys. Rev. Let
    • …
    corecore