285 research outputs found

    Gauge-Higgs Unification and Quark-Lepton Phenomenology in the Warped Spacetime

    Full text link
    In the dynamical gauge-Higgs unification of electroweak interactions in the Randall-Sundrum warped spacetime the Higgs boson mass is predicted in the range 120 GeV -- 290 GeV, provided that the spacetime structure is determined at the Planck scale. Couplings of quarks and leptons to gauge bosons and their Kaluza-Klein (KK) excited states are determined by the masses of quarks and leptons. All quarks and leptons other than top quarks have very small couplings to the KK excited states of gauge bosons. The universality of weak interactions is slightly broken by magnitudes of 10810^{-8}, 10610^{-6} and 10210^{-2} for μ\mu-ee, τ\tau-ee and tt-ee, respectively. Yukawa couplings become substantially smaller than those in the standard model, by a factor |\cos \onehalf \theta_W| where θW\theta_W is the non-Abelian Aharonov-Bohm phase (the Wilson line phase) associated with dynamical electroweak symmetry breaking.Comment: 34 pages, 7 eps files, comments and a reference adde

    Efficient linear solvers for mortar finite-element method

    Get PDF

    T-duality, Fiber Bundles and Matrices

    Get PDF
    We extend the T-duality for gauge theory to that on curved space described as a nontrivial fiber bundle. We also present a new viewpoint concerning the consistent truncation and the T-duality for gauge theory and discuss the relation between the vacua on the total space and on the base space. As examples, we consider S^3(/Z_k), S^5(/Z_k) and the Heisenberg nilmanifold.Comment: 24 pages, typos correcte

    Are Elevated Levels of IGF-1 Caused by Coronary Arteriesoclerosis?: Molecular and Clinical Analysis

    Get PDF
    The importance of insulin-like growth factor-1 (IGF-1) in coronary artery disease (CAD) due to wide range of its biological effects and its therapeutic potential, has already been described. Our aim was to evaluate possible influence of IGF-1 serum level changes on coronary atherosclerosis. In case of existence of such association our further aim was to verify and explain this phenomenon by examination of promoter P1 of IGF-1gene and receptor gene for IGF-1. The study was performed in 101 consecutive patients undergo for routine coronary angiography. Quantitative and qualitative assessment of coronary atherosclerosis was performed respectively by estimation of the number of culprit lesions in coronary arteries and by Gensini score calculation. IGF-1, IGFBP3 and plasma lipoproteins were measured in all patients. In addition, we evaluated DNA from 101 patients, isolated from blood cells, which was amplified by using PCR with sophisticated primers for P1 promoter of IGF-1 gene and IGF-1 receptor gene, then analyzed utilizing SSCP technique and automatically sequenced. We observed significant increase of serum IGF-1 levels in patients with “3 vessel disease” and with high score in Gensini scale when compared to those without any narrowing lesions in coronary arteries and 0 Gensini score (in group with 3 vessel disease 215.0 ± 71.3 versuss 176.7 ± 34.2 ng/ml p = 0.04 and with high Gensini score 231.4 ± 59.3 versus 181.0 ± 37.8 ng/ml p = 0.01).We found different genotypes for five P1 promoter polymorphisms of IGF-1 gene (RS35767, RS5742612, RS228837, RS11829693, RS17879774). There were no significant associations between the observed single nucleotide polymorphism (SNP) and coronary atherosclerosis nor with levels of circulating IGF-1. We found no structural polymorphism in receptor gene for IGF-1 nor in its extracellular domain(exon 2–4) nor in internal domain (exon 16–21). The effect of increased IGF-1 serum level in our study was probably independent from structural polymorphism in promoter P1 for IGF-1 or in receptor gene for IGF-1

    GWAS of bipolar disorder

    Get PDF
    Genome-wide association studies (GWASs) have identified several susceptibility loci for bipolar disorder (BD) and shown that the genetic architecture of BD can be explained by polygenicity, with numerous variants contributing to BD. In the present GWAS (Phase I/II), which included 2964 BD and 61 887 control subjects from the Japanese population, we detected a novel susceptibility locus at 11q12.2 (rs28456, P=6.4 × 10−9), a region known to contain regulatory genes for plasma lipid levels (FADS1/2/3). A subsequent meta-analysis of Phase I/II and the Psychiatric GWAS Consortium for BD (PGC-BD) identified another novel BD gene, NFIX (P best=5.8 × 10−10), and supported three regions previously implicated in BD susceptibility: MAD1L1 (P best=1.9 × 10−9), TRANK1 (P best=2.1 × 10−9) and ODZ4 (P best=3.3 × 10−9). Polygenicity of BD within Japanese and trans-European-Japanese populations was assessed with risk profile score analysis. We detected higher scores in BD cases both within (Phase I/II) and across populations (Phase I/II and PGC-BD). These were defined by (1) Phase II as discovery and Phase I as target, or vice versa (for ‘within Japanese comparisons’, Pbest~10−29, R2~2%), and (2) European PGC-BD as discovery and Japanese BD (Phase I/II) as target (for ‘trans-European-Japanese comparison,’ Pbest~10−13, R2~0.27%). This ‘trans population’ effect was supported by estimation of the genetic correlation using the effect size based on each population (liability estimates~0.7). These results indicate that (1) two novel and three previously implicated loci are significantly associated with BD and that (2) BD ‘risk’ effect are shared between Japanese and European populations

    A functional link between bone morphogenetic proteins and insulin-like peptide 3 signaling in modulating ovarian androgen production

    Get PDF
    Bone morphogenetic proteins (BMP) are firmly implicated as intra-ovarian regulators of follicle development and steroidogenesis. Here we report a microarray analysis showing that treatment of cultured bovine theca cells (TC) with BMP6 significantly (>2-fold; P<0.01) up- or down-regulated expression of 445 genes. Insulin-like peptide 3 (INSL3) was the most heavily down-regulated gene (-43-fold) with CYP17A1 and other key transcripts involved in TC steroidogenesis including LHCGR, INHA, STAR, CYP11A1 and HSD3B1 also down-regulated. BMP6 also reduced expression of NR5A1 encoding steroidogenic factor-1 known to target the promoter regions of the aforementioned genes. Real-time PCR confirmed these findings and also revealed a marked reduction in expression of INSL3 receptor (RXFP2). Secretion of INSL3 protein and androstenedione were also suppressed suggesting a functional link between BMP and INSL3 pathways in controlling androgen synthesis. RNAi-mediated knockdown of INSL3 reduced INSL3 mRNA and secreted protein level (75 and 94%, respectively) and elicited a 77% reduction in CYP17A1 mRNA level and 83% reduction in androstenedione secretion. Knockdown of RXFP2 also reduced CYP17A1 mRNA level (81%) and androstenedione secretion (88%). Conversely, treatment with exogenous (human) INSL3 increased androstenedione secretion ~2-fold. The CYP17 inhibitor abiraterone abolished androgen secretion and reduced expression of both INSL3 and RXFP2. Collectively, these findings indicate a positive autoregulatory role for INSL3 signaling in maintaining thecal androgen production, and visa versa. Moreover, BMP6-induced suppression of thecal androgen synthesis may be mediated, at least in part, by reduced INSL3-RXFP2 signaling

    BPS solutions in ABJM theory and Maximal Super Yang-Mills on RxS^2

    Full text link
    We investigate BPS solutions in ABJM theory on RxS^2. We find new BPS solutions, which have nonzero angular momentum as well as nontrivial configurations of fluxes. Applying the "Higgsing procedure" of arxiv:0803.3218 around a 1/2-BPS solution of ABJM theory, one obtains N=8 super Yang-Mills (SYM) on RxS^2. We also show that other BPS solutions of the SYM can be obtained from BPS solutions of ABJM theory by this higgsing procedure.Comment: 33 pages, v2: minor corrections, references adde

    The Asp298 allele of endothelial nitric oxide synthase is a risk factor for myocardial infarction among patients with type 2 diabetes mellitus

    Get PDF
    Background: Endothelial dysfunction plays a central role in atherosclerotic progression and cardiovascular complications of type 2 diabetes mellitus (T2DM). Given the role of nitric oxide in the vascular system, we aimed to test hypotheses of synergy between the common endothelial nitric oxide synthase (eNOS) Asp(298) allele and T2DM in predisposing to acute myocardial infarction (AMI). Methods: In a population-based patient survey with 403 persons with T2DM and 799 healthy subjects from the population without diabetes or hypertension, we analysed the relation between T2DM, sex and the eNOS Asp(298) allele versus the risk for AMI. Results: In an overall analysis, T2DM was a significant independent risk factor for AMI. In patients with T2DM, homozygosity for the eNOS Asp(298) allele was a significant risk factor (HR 3.12 [1.49-6.56], p = 0.003), but not in subjects without diabetes or hypertension. Compared to wild-type non-diabetic subjects, all patients with T2DM had a significantly increased risk of AMI regardless of genotype. This risk was however markedly higher in patients with T2DM homozygous for the Asp(298) allele (HR 7.20 [3.01-17.20], p < 0.001), independent of sex, BMI, systolic blood pressure, serum triglycerides, HDL -cholesterol, current smoking, and leisure time physical activity. The pattern seemed stronger in women than in men. Conclusion: We show here a strong independent association between eNOS genotype and AMI in patients with T2DM. This suggests a synergistic effect of the eNOS Asp(298) allele and diabetes, and confirms the role of eNOS as an important pathological bottleneck for cardiovascular disease in patients with T2DM

    DNA demethylation-dependent enhancement of toll-like receptor-2 gene expression in cystic fibrosis epithelial cells involves SP1-activated transcription

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical course of cystic fibrosis (CF) is characterized by recurrent pulmonary infections and chronic inflammation. We have recently shown that decreased methylation of the toll-like receptor-2 (TLR2) promoter leads to an apparent CF-related up-regulation of TLR2. This up-regulation could be responsible, in part, for the CF-associated enhanced proinflammatory responses to various bacterial products in epithelial cells. However, the molecular mechanisms underlying DNA hypomethylation-dependent enhancement of TLR2 expression in CF cells remain unknown.</p> <p>Results</p> <p>The present study indicates that there is a specific CpG region (CpG#18-20), adjacent to the SP1 binding site that is significantly hypomethylated in several CF epithelial cell lines. These CpGs encompass a minimal promoter region required for basal TLR2 expression, and suggests that CpG#18-20 methylation regulates TLR2 expression in epithelial cells. Furthermore, reporter gene analysis indicated that the SP1 binding site is involved in the methylation-dependent regulation of the TLR2 promoter. Inhibition of SP1 with mithramycin A decreased TLR2 expression in both CF and 5-azacytidine-treated non-CF epithelial cells. Moreover, even though SP1 binding was not affected by CpG methylation, SP1-dependent transcription was abolished by CpG methylation.</p> <p>Conclusion</p> <p>This report implicates SP1 as a critical component of DNA demethylation-dependent up-regulation of TLR2 expression in CF epithelial cells.</p
    corecore