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Efficient Linear Solvers for Mortar
Finite-Element Method

Tetsuji Matsuo1, Yoshinori Ohtsuki1;2, and Masaaki Shimasaki1

Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
Horiba, Ltd., Kyoto 601-8510, Japan

Efficient linear solvers for mortar finite-element method are studied. An analysis of a brushless DC motor shows that proposed pre-
conditioners improve the convergence to the solutions of linear systems with and without Lagrange multipliers.

Index Terms—Lagrange multiplier, motor analysis, mortar finite-element method (FEM), preconditioner.

I. INTRODUCTION

THE MORTAR finite-element method (FEM) [1], [2] is a
domain decomposition approach that allows mesh noncon-

formity at the domain interfaces. It can provide an efficient for-
mulation for analysis of rotating machinery using a sliding mesh
[3]–[5].

The mortar FE formulation derives two types of linear sys-
tems of equations. One is a linear system with Lagrange multi-
pliers [2]. The other is derived by eliminating the Lagrange mul-
tipliers [3]. A linear solver for an indefinite symmetric system is
required to solve the former linear system because the Lagrange
multiplier method results in a saddle-node problem. On the other
hand, the latter system leads to a positive definite system of
which coefficient matrix should not be obtained explicitly be-
cause of the computational cost. Several efficient linear solvers
[6]–[8] have been proposed for these linear systems and applied
to simple mortar FE analyses. However, efficient linear solvers
for practical mortar FE analyses, such as motor analysis, have
not been studied sufficiently. Comparison of linear solvers for
the two types of linear systems with and without Lagrange mul-
tipliers is also required.

This study proposes several preconditioners to solve the two
types of linear systems. The efficiencies of linear solvers using
these preconditioners are compared.

II. MORTAR FEM

A. Mortar FEM for Magnetostatic Field Analysis

A magnetostatic problem

(1)

is solved on a domain . The domain is divided into several
subdomains each of which is triangulated. The triangulations do
not necessarily match at interfaces between subdomains.
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Fig. 1. Basis functions ' of mortar function space.

A weak form of (1) on a subdomain is given as

(2)

where is the space of piecewise linear FE functions corre-
sponding to the triangulation of .

For simplicity, it is assumed that the number of subdomains
is 2 and that and are the mortar and nonmortar domains,
respectively, for their interface . The mortar FEM gives the
boundary condition on as a weak continuity condition (3)

(3)

In this equation, is the mortar function space of which basis
functions are given by (4) (see Fig. 1)

(4)

Therein, is the trace of on corresponding to the
node , is a basis function of , is the number
of segments on the nonmortar side of . From (3) and (4), the
boundary condition is written as

(5)
where is the number of segments on the mortar side of

, is the interface value of on , and

(6)
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B. Method of Lagrange Multipliers

Lagrange multipliers are often used to derive the linear
system of equations for the mortar FE formulation (2) and (3).
By defining the Lagrange multiplier space as

(7)

the following formulation is obtained:

(8)

(9)

(10)

where the number of subdomains is 2. These result in the fol-
lowing linear system of equations:

(11)

where

(12)

(13)

(14)

(15)

(16)

C. Method of Variable Elimination

The boundary condition (5) is rewritten as

(17)

where

(18)

(19)

... (20)

and is the interface values of given by

(21)

(22)

Fig. 2. Sliding interface between stator and rotator.

By using the relation (17), and are eliminated [3] from
(8)–(10) as

(23)

where

(24)

and is the values of other than .

D. Weak Continuity between Stator and Rotator Domains

The mortar FEM is useful for analyses of rotating machines
using sliding meshes.

Fig. 2 illustrates a sliding interface between rotator and stator,
where and are the numbers of interface segments on rotator
and stator sides, respectively; is the rotating angle and is
the half period along the azimuthal direction. A half-periodic
boundary condition (25) is assumed

(25)

The present analysis assumes that the rotator side is the mortar
side and the stator side is the nonmortar one . The
boundary condition of sliding interface is given by a weak conti-
nuity of (26), where the azimuthal coordinate is used [4], [5]

(26)

Therein, the mortar nodes 0 to are in contact with the stator
domain, and

(27)

(28)

III. LINEAR SOLVERS

A. Method of Lagrange Multipliers

The coefficient matrix of (11) is indefinite. Accordingly, the
MINRES (minimum residual) method is used to solve (11).
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Fig. 3. Approximation of matrix CCC for preconditioning. (a) Point approxima-
tion. (b) Linear approximation.

The preconditioner in the form of Blockdiag ( , , )
is useful where , and

[9]. This study approximates as
follows.

i) and are approximated by and
.

ii) given by i) is approximated by .
iii) and are approximated by their IC decompositions.
iv) given by iii) is approximated by .
v) given by iii) is approximated by dropping its elements

at positions where elements of are 0 [the
nonzero pattern of approximated becomes the same as
that for i)].

, , and are given, respectively, by IC decompositions
of , , and approximated .

B. Method of Variable Elimination

When the linear system (23) is large, the matrix should not
be computed explicitly because it is dense. This paper proposes
preconditioners using approximations to solve (23).
The matrix represents a relation from on mortar nodes
to on nonmortar nodes. This study gives so as to ap-
proximate each element of as follows:

i) value of at the nearest node on the mortar side (point
approximation);

ii) linearly interpolated from the values of at the two
adjacent nodes on the mortar side (linear approximation).

Fig. 3 illustrates these approximations for preconditioning.
An approximated coefficient matrix of linear system (23)

using is IC decomposed for preconditioning to solve (23)
using the CG method.

IV. NUMERICAL EXAMINATION

A. Simple Problem

First, a 2-D magnetostatic field in an iron core shown in
Fig. 4(a) is analyzed. The analyzed domain is subdivided into
two subdomains and as shown in Fig. 4(b). The interface
between them is subdivided into 200 and 194 segments on the
mortar and nonmortar sides, respectively. The subdomains
and are subdivided into 200 100 2 and 194 97 2
triangular elements, respectively.

Fig. 4. Approximation of matrix CCC: (a) analyzed iron core and (b) mortar and
nonmortar domains.

Fig. 5. Convergence to solution for analysis of iron core: (a) method of La-
grange multipliers and (b) method of variable elimination.

TABLE I
COMPARISON OF COMPUTATIONAL COST FOR ANALYSIS OF IRON CORE:

(a) METHOD OF LAGRANGE MULTIPLIERS AND

(b) METHOD OF VARIABLE ELIMINATION

Equations (11) and (23) are solved using the preconditioners
proposed in the Section III. Fig. 5 shows the convergences to
their solutions. Table I compares the iterations and computation
times for the convergences. Columns “(o)” show a simple diag-
onal preconditioning; column (iii) of (b) is given by the precon-
ditioner using exactly computed for the method of variable
elimination. For comparison, the convergence of the conven-
tional Galerkin FEM with 200 200 2 elements is shown
by column “FEM,” where the ICCG method is used for the so-
lution. The convergence criterion is for the residual norm.
A PC with Intel Pentium II (450 MHz) processor was used for
the computation.

Fig. 4(a) and Table I(a) show that the preconditioners (iii) and
(iv) are effective for the linear system with Lagrange multipliers
whereas the preconditioners (ii) and (iv) using diagonal are
not very effective. However, when the system becomes large,
preconditioner (iii) will be expensive because for (iii) is
dense.

On the other hand, Table I(b) shows that the proposed pre-
conditioners (i) and (ii) for the method of variable elimination
efficiently obtain the solution without a large increase in itera-
tions compared with (iii). The increases in computation time and
iterations are not large compared with the conventional FEM.
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Fig. 6. Analyzed motor model.

Fig. 7. Torque waveforms.

Fig. 4 and Table I also shows that the method of variable
elimination can obtain the solution faster than the method of
Lagrange multipliers.

B. A Motor Analysis

A magnetic field in a permanent-magnet brushless DC motor
is analyzed with a sliding mesh. Fig. 6 illustrates the analyzed
motor model (37.5-mm thick). The relative permeability of iron
core is 1000. The magnetization of permanent magnet is 0.9 T.
The half azimuthal period of 90 is equally divided into 90 seg-
ments at the interface between the stator and rotator. A PC with
Intel Celeron (2 GHz) processor was used for the computation.

Fig. 7 shows torque waveforms obtained for rotating speed of
300, 900, and 1500 r/min, where smooth waveforms are obtained
inspiteof themeshnonconformity.Fig.8showstheconvergences
to their solutions when 22.5 . Table II compares the itera-
tionsandcomputation timesfor theconvergences.Table II(c) lists
those in the case of degree where mesh nonconformity
does not occur at the interface. The conventional FEM using the
ICCG method is also examined when for comparison.

Fig. 8 and Table II show that the proposed preconditioner (v)
is effective for the linear system with Lagrange multipliers, and
that preconditioners (i) and (ii) proposed for the method of vari-
able elimination efficiently obtain the solution. The method of
variable elimination obtains the solution faster than the method
of Lagrange multipliers. Table II(c) shows that the computa-
tional cost of the Mortar FEM is not much larger than that of
the conventional FEM.

V. CONCLUSION

Efficient preconditioners are proposed for linear systems
with and without Lagrange multipliers that result from the
mortar FEM. An analysis of a brushless DC motor shows
that proposed preconditioners improve the convergence to
the solutions of both linear systems. The method of variable
elimination can obtain the solution faster than the method of
Lagrange multipliers.

Fig. 8. Convergence to solution for motor analysis. (a) Method of Lagrange
multipliers. (b) Method of variable elimination.

TABLE II
COMPARISON OF COMPUTATIONAL COST FOR MOTOR ANALYSIS:

(a) LAGRANGE MULTIPLIER METHOD; (b) METHOD OF

VARIABLE ELIMINATION; (c) METHOD OF VARIABLE

ELIMINATION (� = 0)
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