7 research outputs found

    Properties of iron-modified-by-silver supported on mordenite as catalysts for nox reduction

    Get PDF
    A series of mono and bimetallic catalysts based on a Fe-Ag mixture deposited on mordenite was prepared by ion-exchange and evaluated in the catalytic activity test of the de-NOx reaction in the presence of CO/C3H6. The activity results showed that the most active samples were the Fe-containing ones, and at high temperatures, a co-promoter effect of Ag on the activity of Fe catalysts was also observed. The influence of the order of cation deposition on catalysts formation and their physicochemical properties was studied by FTIR (Fourier Transform Infrared Spectroscopy) of adsorbed NO, XANES (X-ray Absorption Near-Edge Structure), and EXAFS (Extended X-ray Absorption Fine Structure) and discussed in terms of the state of iron. Results of Fe K-edge XANES oscillations showed that, in FeMOR catalysts, iron was present in a disordered state as Fe3+ and Fe2+. In FeAgMOR, the prevailing species was Fe3+, while in the AgFeMOR catalyst, the state of iron was intermediate or mixed between FeMOR and FeAgMOR. The Fe K-edge EXAFS results were characteristic of a disordered phase, the first coordination sphere being asymmetric with two different Fe-O distances. In FeAgMOR and AgFeMOR, coordination of Fe-O was similar to Fe2O3 with a few amount of Fe2+ species. We may conclude that, in the bimetallic FeAgMOR and AgFeMOR samples, a certain amount of tetrahedral Al3+ ions in the mordenite framework is replaced by Fe3+ ions, confirming the previous reports that these species are active sites for the de-NOx reaction. Based on the thermodynamic analysis and experimental data, also, it was confirmed that the order of deposition of the components influenced the mechanism of active sites’ formation during the two steps ion-exchange synthesis

    Catalytic Pd-Ag nanoparticles immobilized on fiber glass by surface self-propagating thermal synthesis

    No full text
    Pd–Ag nanoparticles with different Pd/Ag ratio were deposited onto fiber glass by using the technique of surface self-propagating thermal synthesis (SSTS) and characterized by X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (ААS), and EXAFS spectroscopy. The samples reduced in hydrogen exhibited the formation of Pd–Ag alloy whose tentative structure and composition were suggested. Thermally scheduled reduction of Pd–Ag catalysts in hydrogen made the Ag atoms partially oxidized. Reported are the catalytic properties of synthesized Pd–Ag samples in selective hydrogenation of acetylene

    Catalytic Pd-Ag nanoparticles immobilized on fiber glass by surface self-propagating thermal synthesis

    No full text
    Pd–Ag nanoparticles with different Pd/Ag ratio were deposited onto fiber glass by using the technique of surface self-propagating thermal synthesis (SSTS) and characterized by X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (ААS), and EXAFS spectroscopy. The samples reduced in hydrogen exhibited the formation of Pd–Ag alloy whose tentative structure and composition were suggested. Thermally scheduled reduction of Pd–Ag catalysts in hydrogen made the Ag atoms partially oxidized. Reported are the catalytic properties of synthesized Pd–Ag samples in selective hydrogenation of acetylene

    Nanostructured silica-supported gold: Effect of nanoparticle size distribution and electronic state on its catalytic properties in oxidation reactions

    No full text
    Gold nanocatalysts, active in several oxidation reactions, suffer of insufficient time-on-stream stability. The easiest way to solve this problem is modifying the support, due to metal-support interaction. This study compares modifying effects of MgO and La2O3 on textural, electronic, and catalytic properties of Au nanoparticles (NPs) supported on inert nanostructured SiO2 in CO oxidation and liquid phase 1-octanol oxidation. Modification of the silica support surface with La and Mg increased metal support interaction, leading to gold particles with primary size of 1 nm but with different stability: stable under different pretreatment conditions on Mg-modified samples but highly sensible to the pretreatments on La-modified samples. Both modifiers changed electronic properties of supported gold favoring formation and stabilization of Auδ+ states, which are probable gold active sites in catalytic redox processes. Modification with La and Mg oxides changed catalytic properties in CO oxidation before and after pretreatment in H2 at 300 °C for 1 h. Gold catalysts supported on La- and Mg-modified silica showed similar performance in 1-octanol oxidation with higher conversion than unmodified Au/SiO2. La and Mg showed better promoting effects of catalytic properties in this reaction than redox modifiers (Fe and Ce) supported on small SiO2 particles
    corecore