970 research outputs found

    Herbal Remedies for Combating Irradiation: a Green Antiirradiation Approach

    Get PDF
    Plants play important roles in human life not only as suppliers of oxygen but also as a fundamental resource to sustain the human race on this earthly plane. Plants also play a major role in our nutrition by converting energy from the sun during photosynthesis. In addition, plants have been used extensively in traditional medicine since time immemorial. Information in the biomedical literature has indicated that many natural herbs have been investigated for their efficacy against lethal irradiation. Pharmacological studies by various groups of investigators have shown that natural herbs possess significant radioprotective activity. In view of the immense medicinal importance of natural product based radioprotective agents, this review aims at compiling all currently available information on radioprotective agents from medicinal plants and herbs, especially the evaluation methods and mechanisms of action. In this review we particularly emphasize on ethnomedicinal uses, botany, phytochemistry, mechanisms of action and toxicology. We also describe modern techniques for evaluating herbal samples as radioprotective agents. The usage of herbal remedies for combating lethal irradiation is a green antiirradiation approach for the betterment of human beings without high cost, side effects and toxicity

    Bioinformatics for Membrane Lipid Simulations: Models, Computational Methods, and Web Server Tools

    Get PDF
    Biological membranes are complex environments consisting of different types of lipids and membrane proteins. The structure of a lipid bilayer is typically difficult to study because the membrane liquid crystalline state is made up of multiple disordered lipid molecules. This complicates the description of the lipid membrane properties by the conformation of any single lipid molecule. Molecular dynamics (MD) simulations have been used extensively to investigate properties of membrane lipids, lipid vesicles, and membrane protein systems. All-atom membrane models can elucidate detailed contacts between membrane proteins and its surrounding lipids, while united-atom and coarse-grained description have allowed larger models and longer timescales up to microsecond mark to be probed. Additionally, membrane models with mixed phospholipids and lipopolysaccharide content have made it possible to model improved views of biological membranes. Here, we present an overview of commonly used lipid force fields by the biosimulation community, useful tools for membrane MD simulations, and recent advances in membrane simulations

    The Full Range of Predictions for B Physics From Iso-singlet Down Quark Mixing

    Get PDF
    We extend the range of predictions of the isosinglet (or vector) down quark model to the fully allowed physical ranges, and also update this with the effect of new physics constraints. We constrain the present allowed ranges of sin(2*beta) and sin(2*alpha), gamma, x_s, and A_{B_s}. In models allowing mixing to a new isosinglet down quark (as in E_6) flavor changing neutral currents are induced that allow a Z^0 mediated contribution to B-Bbar mixing and which bring in new phases. In (rho, eta), (x_s, sin(gamma)), and (x_s, A_{B_s}) plots for the extra isosinglet down quark model which are herein extended to the full physical range, we find new allowed regions that will require experiments on sin(gamma) and/or x_s to verify or to rule out an extra down quark contribution.Comment: 13 pages in RevTeX, 7 postscript figure

    Fundamental thickness limit of itinerant ferromagnetic SrRuO3_3 thin films

    Full text link
    We report on a fundamental thickness limit of the itinerant ferromagnetic oxide SrRuO3_3 that might arise from the orbital-selective quantum confinement effects. Experimentally, SrRuO3_3 films remain metallic even for a thickness of 2 unit cells (uc), but the Curie temperature, TC_C, starts to decrease at 4 uc and becomes zero at 2 uc. Using the Stoner model, we attributed the TC_C decrease to a decrease in the density of states (No_o). Namely, in the thin film geometry, the hybridized Ru-dyz,zx_yz,zx orbitals are terminated by top and bottom interfaces, resulting in quantum confinement and reduction of No_o.Comment: 20 pages, 4 figure

    Surface Modification Effects on CNTs Adsorption of Methylene Blue and Phenol

    Get PDF
    This study compares the adsorption capacity of modified CNTs using acid and heat treatment. The CNTs were synthesized from acetone and ethanol as carbon sources, using floating catalyst chemical vapor deposition (FC-CVD) method. energy-dispersive X-ray spectroscopy (EDX) and Boehm method revealed the existence of oxygen functional group on the surface of CNTs. Heat modification increases the adsorption capacity of as-synthesized CNTs for methylene blue (MB) and phenol by approximately 76% and 50%, respectively. However, acid modification decreases the adsorption capacity. The equilibrium adsorption data fitted the Redlich-Peterson isotherm. For the adsorption kinetic study, the experimental data obeyed the pseudo-second-order model. Both modifications methods reduced the surface area and pore volume. The studies show that the adsorption of MB and phenol onto modified CNTs is much more influenced by their surface functional group than their surface area and pore volume

    Iso-singlet Down Quark Mixing And CP Violation Experiments

    Full text link
    We confront the new physics models with extra iso-singlet down quarks in the new CP violation experimental era with sin(2β)\sin{(2\beta)} and ϵ/ϵ\epsilon'/\epsilon measurements, K+π+ννˉK^+ \to \pi^+ \nu \bar{\nu} events, and xsx_s limits. The closeness of the new experimental results to the standard model theory requires us to include full SM amplitudes in the analysis. In models allowing mixing to a new isosinglet down quark, as in E6_6, flavor changing neutral currents are induced that allow a Z0Z^0 mediated contribution to BBˉB-\bar B mixing and which bring in new phases. In (ρ,η)(\rho,\eta), (xs,sin(γ))(x_s,\sin{(\gamma)}), and (xs,sin(2ϕs))(x_s, \sin{(2\phi_s)}) plots we still find much larger regions in the four down quark model than in the SM, reaching down to η0\eta \approx 0, 0sin(γ)10 \leq \sin{(\gamma)} \leq 1, .75sin(2α)0.15-.75 \leq \sin{(2\alpha)} \leq 0.15, and sin(2ϕs)\sin{(2\phi_s)} down to zero, all at 1σ\sigma. We elucidate the nature of the cancellation in an order λ5\lambda^5 four down quark mixing matrix element which satisfies the experiments and reduces the number of independent angles and phases. We also evaluate tests of unitarity for the 3×33\times3 CKM submatrix.Comment: 14 pages, 16 figures, REVTeX

    Androgen receptor genotyping in a large Australasian cohort with androgen insensitivity syndrome; identification of four novel mutations

    Get PDF
    We genotyped the androgen receptor (AR) gene in 31 Australasian patients with androgen insensitivity syndrome (AIS). The entire coding region of AR was examined including analysis of polymorphic CAG and GGN repeats in all patients. AR defects were found in 66.7% (6/9) of patients with complete AIS (CAIS) and 13.6% (3/22) of patients with partial AIS (PAIS). A novel deletion (N858delG) leading to a premature stop codon was found in CAIS patient P1. CAIS patient P2 has a novel deletion (N2676delGAGT) resulting in a stop at codon 787. These mutations would result in inactivation of AR protein. A novel insertion of a cysteine residue in the first zinc finger of the AR DNA-binding domain (N2045_2047dupCTG) was found in CAIS patient P3. PAIS patient P4 has a novel amino acid substitution (Arg760Ser) in the AR ligand binding domain, which may impair ligand binding. Five patients were found to have previously reported AR mutations and no mutations were identified in the remaining patients

    Challenges to the industrial melt-processing of conductive plastics

    Get PDF
    In this work, we investigate the relationship between the timescales available for polymer mobility during processing and post-processing and the electrical resistivity of melt-processed thermoplastics filled with carbon nanoparticles. Post-process annealing below the glass transition temperature was one avenue explored to uplift electrical conductivity. Detailed analysis of available literature on thermoplastics filled with either graphite nanoplatelets or carbon nanotubes, and of relevant processing data suggests that the required timescale for shaping process or post-processing to obtain conductive material needs to be sufficiently longer than that of the base polymer characteristic relaxation time τd. Four factors have been identified that promote the formation of a conductive filler network in thermoplastics: filler loading content, polymer molar mass, processing temperature and processing timescales
    corecore