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This study compares the adsorption capacity of modified CNTs using acid and heat treatment. The CNTs were synthesized from
acetone and ethanol as carbon sources, using floating catalyst chemical vapor deposition (FC-CVD) method. energy-dispersive
X-ray spectroscopy (EDX) and Boehm method revealed the existence of oxygen functional group on the surface of CNTs. Heat
modification increases the adsorption capacity of as-synthesized CNTs for methylene blue (MB) and phenol by approximately
76% and 50%, respectively. However, acid modification decreases the adsorption capacity. The equilibrium adsorption data fitted
the Redlich-Peterson isotherm. For the adsorption kinetic study, the experimental data obeyed the pseudo-second-order model.
Both modifications methods reduced the surface area and pore volume. The studies show that the adsorption of MB and phenol
onto modified CNTs is much more influenced by their surface functional group than their surface area and pore volume.

1. Introduction

The effluent discharged from the textile industry contains
mainly dyes. Dyes can cause allergic dermatitis and skin irri-
tation [1]. High amount of dyes releases into water surface
causes abnormal coloration and has bad effect on the growth
of bacteria and biological activity [2]. Some are report-
ed to be carcinogenic and mutagenic for aquatic organisms
[3]. Phenolic compounds are discharged from the coal tar,
gasoline, plastic, rubber proofing, disinfectant, pharmaceu-
tical and steel industries, domestic wastewaters, agricultural
runoff, and chemical spills industries. The presence of phe-
nolic compounds even at low concentration can cause un-
pleasant taste and odour. Adsorption is a promising method
for wastewater treatment compared to the other methods
such as precipitation and coagulation [4], chemical oxida-
tion [5], sedimentation [6], filtration [7], osmosis, and ion
exchange [8]. The method is recognized for its high effi-
ciency, low cost, simplicity, reusability of the adsorbent, and
easy recovery. One of the most recent studied materials is
carbon nanotubes (CNTs).

CNTs are made up of concentric rolled graphene sheets
produced from laser ablation, chemical vapor deposition,
and arc discharge. CNTs have been used as gas sensor [26],
nanofiber-reinforcing composites [27], paper batteries [28],
solar cells [29], and supercapacitors [30], due to their excel-
lent electrical, electronic, and mechanical properties. Their
high surface area, small diameter, various bulks and individ-
ual morphology plus their defected and easily functionalized
surface are beneficial for CNTs to become a potential adsorb-
ent for liquid adsorption. CNTs have been used as adsorbents
for different types of pollutants such as inorganic pollutant
(Cu(II) [31], Cr (VI) [32], and Zn(II) [33] and organic pol-
lutant (methylene blue [16], natural organic matter (NOM)
[34], and nitroaromatic compunds [24].

Surface functional groups play an important role in ad-
sorption. Functional groups commonly found on the surface
of as-prepared CNTs are carboxylic, lactonic, carbonyl, and
hydroxyl [24, 31, 35, 36]. The quantity of the functional
group on the external and internal surface of CNTs surface
can be increased or be reduced by suitable surface treatment
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Figure 1: TEM images of (a) CNT-A-HM and (b) CNT-E-HM.
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Figure 2: N2 adsorption isotherms of (a) CNT-A and (b) CNT-E at 77 K: � CNT-A-AM; � CNT-A-HM; × CNT-A (as synthesized); �
CNT-E-AM; � CNT-E-HM; × CNT-E (as synthesized).

Table 1: Structures and characteristics of MB and phenol.

Name
Molecular size width (nm) ×

Length (nm) × thickness (nm)
Formula

Molecular
weight (g/mol)

λmax (nm) Molecular structure

MB 0.740 × 1.690 × 0.380 C16H18ClN3S 319.85 664
N(CH3)2(CH3)2N

N

S+

Cl−

phenol 0.638× 0.792 × 0.822 C6H6O 94.11 270

OH
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Figure 3: Extended region of low P/P0 < 0.1; (a) CNT-A; (b) CNT-E: � CNT-A-AM; � CNT-A-HM; × CNT-A (as synthesized); � CNT-
E-AM; � CNT-E-HM; × CNT-E (as synthesized).
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Figure 4: Pore size distributions of (a) CNT-A and (b) CNT-E; — CNT-A-AM; � CNT-A-HM; - - - - CNT-A (as synthesized); — CNT-E-
AM;� CNT-E-HM; - - - - CNT-E (as synthesized).
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Figure 5: FTIR Spectra of (a) CNT-A: a—CNT-A (as synthesized); b—CNT-A-AM; c—CNT-A-HM; (b) CNT-E: a—CNT-A (as
synthesized); b—CNT-A-AM; c—CNT-A-HM.
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Figure 6: Zeta potential of modified and as-synthesized CNTs: × CNT-A (as synthesized); � CNT-A-HM; � CNT-A-AM; © CNT-E (as
synthesized);� CNT-E-HM; � CNT-E-AM. Each point is the average value of triplicate samples. Error bars represent the range.

Table 2: Physical properties of CNTs.

CNTs
BET surface area

(m2/g)
Total pore

Volume (cm3/g)
Purity
(%)∗

CNT-A (As
synthesized)

90.429 0.4986 93.51

CNT-E (As
synthesized)

89.159 0.1729 94.89

CNT-A-HM 43.776 0.2026 92.95

CNT-A-AM 49.976 0.2339 95.65

CNT-E-HM 55.392 0.1866 94.68

CNT-E-AM 86.741 0.1803 97.46
∗

Determined by TGA; purity = 100% − residue (%).

Table 3: Elemental composition of CNTs.

CNTs C (wt%) Fe (wt%) O (wt%)

CNT-A (as synthesized) 86.87 12.68 0.45

CNT-E (as synthesized) 90.51 8.64 0.85

CNT-A-HM 94.65 5.26 0.09

CNT-A-AM 91.58 5.89 2.53

CNT-E-HM 91.40 8.12 0.48

CNT-E-AM 90.89 6.20 2.91

[37]. The functional groups were attributed to influence sig-
nificantly the adsorption capacity of resorcinol on MWCNTs
[25] and o-xylene and p-xylene on SWCNTs.

Heat modification using argon is shown to be beneficial
for producing high crystallinity and uniformity of carbon’s
surface [21, 38]. However, very few investigations were re-
ported on the adsorption of organic pollutant onto heat-
modified CNTs, except the negative effect of graphitized
CNTs on adsorption of 1,2-dichlorobenzene [39].

In this study, heat-modified and acid-modified CNTs
were used for the adsorption of methylene blue (MB) and
phenol. The objective of this study was to compare the ad-
sorption capacity of heat-modified and acid-modified CNTs.

The adsorption equilibrium was fitted by Langmuir, Fre-
undlich, and Redlich-Peterson models. The adsorption ki-
netic was tested by pseudo-first-order kinetic, pseudo sec-
ond-order kinetic and intraparticle diffusion model.

2. Materials and Method

2.1. Chemicals. MB (purity ≥ 98.5%, HmbG chemicals) and
phenol (purity≥ 99%, Sigma-Aldrich) were used as received.
Other chemicals such as sodium hydroxide (NaOH),
hydrochloric acid (HCl), sodium carbonate (Na2CO3) and
sodium bicarbonate (NaHCO3), were purchased as analytical
reagent. All solutions used in the experiment were prepared
using distilled water.

2.2. CNTs Preparation. Two types of CNTs with different
morphologies were produced by FC-CVD method using
acetone and ethanol as carbon sources. The CNTs were
synthesized using an apparatus consisting of a ceramic tube
(50 mm OD, 40 mm ID, and 1 m long) located horizontally
inside a furnace with two stages. The first stage was a quartile
of a tube wrapped using heating tape in order to heat the
catalyst up to 150◦C. The second stage was an electrical
furnace (carbolite) equipped with silicon carbide heating
element that could be heated up to 1200◦C, with 10◦C/min
heating rate.

After the temperature at the second stage was maintained
at 700◦C for about 1 hour, the temperature of the first stage
(where ferrocene was located ∼500 mg) was raised to 150◦C.
At this step, argon flow (75 mL/min) was stopped to avoid Fe
nanoparticles being flown out of the first stage. Then after
3 minutes, hydrogen was bubbled into the carbon sources
at flow rate of 150 and 100 mL/min for CNT-A and CNT-E,
respectively. The first stage of the reactor was maintained at
150◦C during the reaction for 3–5 hours. After the synthesis,
the CNTs were cooled to room temperature in argon flow.
Finally, the as synthesized CNTs were heated by air oxidation
at 350◦C for 1 hour to remove amorphous carbon [40].
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Table 4: Boehm titration method.

CNTs Carboxyl (mmol/g) Lactones (mmol/g) Phenols (mmol/g) Total acidity (mmol/g) Total basicity (mmol/g)

CNT-A (as synthesized) 0.1680 0.1530 0.3970 0.7188 0.0199

CNT-E (as synthesized) 0.1970 0.0590 0.4640 0.7200 0.0192

CNT-A (AM) 0.2519 0.1963 0.5931 1.0413 0.0144

CNT-A (HM) 0.0123 0.0139 0.0176 0.0438 0.0562

CNT-E (AM) 0.2774 0.1705 0.5621 1.0100 0.0164

CNT-E (HM) 0.0226 0.0250 0.0061 0.0538 0.0616

Table 5: The coefficients of the Langmuir, Freundlich, and Redlich-Peterson isotherms for MB system.

(a)

CNTs
Langmuir isotherm

Qm (mmol/kg) KL (L/mmol) RL (−) R2

CNT-A (as synthesized) 84.66 595.30 0.0138 0.9914

CNT-E (as synthesized) 103.86 8433.29 0.0009 0.9998

CNT-A-AM 80.09 1779.68 0.0039 0.9309

CNT-E-AM 99.83 2085.33 0.0036 0.9442

CNT-A-HM 93.15 2171.75 0.0036 0.9870

CNT-E-HM 182.71 2594.46 0.0057 0.9402

(b)

CNTs
Freundlich isotherm

KF (mmol/kg)/(mmol/L)1/n n (−) 1/n R2

CNT-A (as synthesized) 138.31 5.28 0.1895 0.9624

CNT-E (as synthesized) 134.55 10.64 0.0940 0.6392

CNT-A-AM 112.77 7.63 0.1310 0.9017

CNT-E-AM 142.32 7.36 0.1358 0.9034

CNT-A-HM 144.34 6.02 0.1662 0.9020

CNT-E-HM 335.04 5.58 0.1793 0.8621

(c)

CNTs
Redlich-Peterson

AR (L/g) BR (L/mmol) qR−P (mmol/kg) βR (−) R2

CNT-A (as synthesized) 51.10 609.38 83.86 0.9970 0.9915

CNT-E (as synthesized) 1259.21 11955.74 105.32 0.9980 0.8738

CNT-A-AM 241.88 3679.08 65.74 0.9350 0.9979

CNT-E-AM 276.29 3193.16 86.52 0.9530 0.9976

CNT-A-HM 403.62 5893.01 68.49 0.9000 0.8789

CNT-E-HM 681.96 4360.55 156.39 0.9300 0.9343

2.3. Surface Modification of CNTs. For acid modification, the
as synthesized CNTs were sonicated for 1 hour and stirred
using magnetic stirrer in room temperature with 4 M of
HNO3 acid for 24 hours [41, 42]. The CNTs were then
washed with distilled water (until no pH changes occurred)
and dried in oven for 24 hours at 100◦C. For heat modifica-
tion, the CNTs were put in the reactor and heated to 1000◦C
under argon flow for 1 hour. The modified CNTs produced
from ethanol (CNT-E) and acetone (CNT-A) by acid and
heat treatment are identified here as CNT-E-AM, CNT-A-
AM, CNT-E-HM, and CNT-A-HM.

2.4. CNTs Characterization. The CNTs were characterized
using VP-SEM (LEO 1455), TEM (Philips HMG 400), EDX
(LEO 1455), and HRTEM (PHILIPS, TECNAI 2). Thermal
analysis was performed using TGA/SDTA 851e (METTLER-
TOLEDO) under maximum temperature of 1000◦C and
heating rate of 5◦C/min by inserting a small amount of
CNTs (∼10 mg) with an air flow rate of 10 mL/min. Samples
were degassed prior to be used at 150◦C for 12 hour under
vacuum. Specific total surface areas were calculated using
the BET equation, whereas specific total pore volumes were
evaluated from nitrogen uptake at a relative pressure (P/P0)
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Table 6: The coefficients of the Langmuir, Freundlich, and Redlich-Peterson isotherms for phenol system.

(a)

CNTs
Langmuir isotherm

Qm (mmol/kg) KL (L/mmol) RL (−) R2

CNT-A (as synthesized) 52.50 6.738 0.2227 0.8332

CNT-E (as synthesized) 120.38 25.04 0.0774 0.7489

CNT-A-AM 24.78 7.585 0.1936 0.7550

CNT-E-AM 58.60 2.99 0.3850 0.8156

CNT-A-HM 53.00 24.08 0.0745 0.6623

CNT-E-HM 181.09 12.87 0.1434 0.9757

(b)

CNTs
Freundlich isotherm

KF (mmol/kg)/(mmol/L)1/n n 1/n R2

CNT-A (as synthesized) 57.31 2.0892 0.4787 0.8366

CNT-E (as synthesized) 145.56 3.7348 0.2675 0.9975

CNT-A-AM 25.85 2.6307 0.3801 0.5057

CNT-E-AM 52.34 1.8019 0.5549 0.8513

CNT-A-HM 57.86 4.9281 0.2029 0.5469

CNT-E-HM 216.38 2.7947 0.3578 0.9892

(c)

CNTs
Redlich-Peterson

AR (L/g) BR (L/mmol) qR−P (mmol/kg) βR (−) R2

CNT-A (as synthesized) 0.51 46.45 10.9510 0.60 0.8956

CNT-E (as synthesized) 4.97 61.12 81.2698 0.90 0.9959

CNT-A-AM 0.18 7.67 24.5734 0.99 0.8489

CNT-E-AM 504189.30 13.55 3.72011 0.41 0.9333

CNT-A-HM 1.29 24.60 43.8880 0.99 0.9693

CNT-E-HM 5.59 82.13 68.0682 0.75 0.9979
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Figure 7: Effect of pH on (a) MB and (b) phenol adsorption capacity onto CNTs:� CNT-E-HM; • CNT-E (as synthesized); � CNT-E-AM;
× CNT-A (as synthesized); � CNT-A-HM; © CNT-A-AM. Each point is the average value of triplicate samples. Error bars represent the
range.
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Figure 8: Plot of adsorption isotherm of (a) MB and (b) phenol onto CNTs: � CNT-E-HM; • CNT-E (as synthesized); � CNT-E-AM; ×
CNT-A (as synthesized);� CNT-A-HM;© CNT-A-AM. Each point is the average value of triplicate samples. Error bars represent the range.

Table 7: Comparison of the first-order, second-order and intra-
particle diffusion rate constants values for MB adsorption on CNT-
A-AM at different initial concentration.

(a)

C0

(mmol/L)
Pseudo-first-order kinetic

qe,exp

(mmol/kg)
qe,calc

(mmol/kg)
k1

(min−1)
R2

0.0156 27.02 18.13 0.0141 0.9712

0.0782 66.72 39.43 0.0113 0.9509

0.1563 72.28 40.26 0.0080 0.8853

(b)

C0

(mmol/
L)

Pseudo-second-order kinetic

qe,exp

(mmol/kg)
qe,calc

(mmol/kg)
qe,exp

(mmol/kg)
R2 qe,exp

(mmol/kg)

0.0156 27.02 27.94 0.002123 0.9931 1.5501

0.0782 66.72 67.53 0.009173 0.9718 4.1832

0.1563 72.28 69.94 0.000908 0.9394 4.4436

(c)

C0 (mmol/L)
Intraparticle diffusion

ki (mmol/kg/min0.5) Ci (mmol/kg) R2

0.0156 1.368 7.3303 0.9010

0.0782 3.171 20.1845 0.8775

0.1563 3.191 22.1716 0.8485

of N2 equal to 0.99. The Barret, Johner, and Halenda (BJH)
method was used to determine the distributions of the meso-
pores [43]. The zeta potential of CNTs was measured at pH
2–12 using a Zetasizer Nano Z (Malvern instrument). Seven
measurements were made from each sample at each pH and
the mean of zeta potential was determined as the point of
isoelectric pHiep.

The functional groups on the surface of CNTs were de-
tected by a Fourier transform infrared (FTIR) spectroscopy

Table 8: Comparison of the first-order, second-order, and intra-
particle diffusion rate constants values for MB adsorption on CNT-
A-HM at different initial concentration.

(a)

C0

(mmol/L)
Pseudo-first-order kinetic

qe,exp

(mmol/kg)
qe,calc

(mmol/kg)
k1

(min−1)
R2

0.0156 29.24 8.94 0.0164 0.8205

0.0781 80.64 36.92 0.0152 0.9065

0.1563 110.96 34.87 0.0125 0.7755

(b)

C0

(mmol/
L)

Pseudo-second-order kinetic

qe,exp

(mmol/kg)
qe,calc

(mmol/kg)
qe,exp

(mmol/kg)
R2 qe,exp

(mmol/kg)

0.0156 29.24 28.07 0.0013 0.9900 10.1213

0.0782 80.64 81.63 0.0014 0.9819 9.5904

0.1563 110.96 110.87 0.0017 0.9760 21.1965

(c)

C0 (mmol/L)
Intraparticle diffusion

ki (mmol/kg/min0.5) Ci (mmol/kg) R2

0.0156 0.974 16.4302 0.4938

0.0782 3.498 34.2598 0.7114

0.1563 4.267 56.1451 0.6067

(Nexus, Thermo Nicolet). The content of acidic and basic
surface groups were obtained by titration [44]. The titration
was conducted by adding 0.05 g of CNTs into a 100 mL flask
containing 50 mL of the following 0.1 M solutions: NaHCO3,
Na2CO3, NaOH, and HCl. The flask was sealed and shaken
at 25◦C for 48 h, and then filtered through a 0.45 μm filter
paper. The filtrate (10 mL) was pipetted and mixed with
0.1 M HCl. The excess acid was titrated with 0.1 M NaOH.
The quantities of acidity of various types were determined
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Table 9: Comparison of the first-order, second-order, and intraparticle diffusion rate constants values for phenol adsorption on CNT-A-AM
at different initial concentration.

(a)

C0 (mmol/L)
Pseudo-first-order kinetic

qe,exp (mmol/kg) qe,calc (mmol/kg)
k1

(min−1)
R2

0.0532 5.86 12.00 0.0050 0.6874

0.2656 42.55 22.36 0.0016 0.4109

0.5313 49.66 41.29 0.0023 0.9876

(b)

C0 (mmol/L)
Pseudo-second-order kinetic

qe,exp (mmol/kg) qe,calc (mmol/kg) k2 (kg/mmol ·min) R2 h (mg/g ·min)

0.0531 5.86 3.46 0.001562 0.8157 0.1859

0.2656 42.55 34.28 0.001365 0.9103 1.6056

0.5313 49.66 40.68 0.000329 0.7982 0.5419

(c)

C0 (mmol/L)
Intraparticle diffusion

ki (mmol/kg/min0.5) Ci (mmol/kg) R2

0.0531 0.594 5.7815 0.6382

0.2656 1.117 14.2365 0.5577

0.5313 1.920 1.2953 0.8389

from the assumption that NaHCO3 reacts with carboxylic
groups, Na2CO3 reacts with carboxylic and lactonic groups,
and NaOH reacts with carboxylic, lactonic, and phenolic
groups.

2.5. Equilibrium Experiment. 100 mL of MB and phenol
standard solution with predetermined initial concentration
of 5, 10, 20, 30, 40, and 50 mg/L were put in the 250 mL
conical flasks containing 0.05 g of CNTs. Those flasks with
the mixture of CNTs and the adsorbates were completely
wrapped with aluminum foil to prevent sunlight from caus-
ing color bleaching. The flasks were shaken using an orbit-
al shaker, operated at 150 rpm at room temperature. The
shaking process consummated for 72 hours. Then, the solu-
tion was centrifuged at 5000 rpm for 30 minutes. The clear
supernatants were then decanted and analyzed using a UV-
Vis spectrophotometer (Ultraspec 3100) at their maximum
wavelength.

2.6. Kinetics Experiment. Kinetic experiments were per-
formed at room temperature. CNTs (0.1 g) were intro-
duced to 200 mL and 450 mL of MB and phenol solution,
respectively, at optimum pH. Samples were taken at regular
intervals and were analyzed using UV-Vis spectrophotome-
ter. The quantity of the amount adsorbed at time t (min),
qt (mmol/kg), was calculated from

qt = V × (C0 − Ct)
m

, (1)

where Ct is the concentration of solution at time t (mmol/L),
C0 is the initial concentration of solution at t = 0 (mmol/L),

m is the CNTs weight (g), and V is the volume of solution
(L).

3. Results and Discussion

3.1. Characterization of the CNTs. Figures 1(a) and 1(b) show
the TEM images of the CNT-A-HM and CNT-E-HM respec-
tively. No obvious physical change after surface modification
is observed. Table 2 shows the physical properties of CNTs
before and after surface modification. After acid modifica-
tion, the surface area decreased as compared to as synthesized
CNTs. As observed from the EDX analysis (Table 3), there is a
reduction of Fe particles on CNTs after surface modification.
It was found that acid and heat modifications contribute to
the elimination of catalyst particles.

BET surface area also decreased for heat and acid-
modified CNTs. This decrease maybe caused by the reduction
of surface defect under high temperature as reported by Zhou
et al. [45]. As for acid-modified CNTs, the formation of
functional groups after oxidation blocks the pore of CNTs,
thus, decreasing their pore volume. Similar result was also
found by Lu et al. [46]. This observation is supported by
FTIR result (shown in Figure 5), where many new oxygen
functional groups were created after oxidation with HNO3.
For CNT-E, the heat treatment reduces the functional groups
and hence increasing the total pore volume. Similar result
was also reported by Shen et al. [24] and Chin et al. [47].

Figures 2(a) and 2(b) show N2 adsorption isotherms
for both adsorbent at 77 K. Acid-modified CNTs have a
higher adsorption of N2 than heat-modified CNTs. A steep
increase of N2 adsorption is observed below (P/P0) < 0.1,
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Table 10: Comparison of the first-order, second-order, and intraparticle diffusion rate constants values for phenol adsorption on CNT-A-
HM at different initial concentration.

(a)

C0 (mmol/L)
Pseudo-first-order kinetic

qe,exp (mmol/kg) qe,calc (mmol/kg)
k1

(min−1)
R2

0.0531 38.22 19.64 0.0115 0.7450

0.2656 54.49 24.64 0.0023 0.4109

0.5313 66.45 34.68 0.0026 0.5477

(b)

C0 (mmol/L)
Pseudo-second-order kinetic

qe,exp (mmol/kg) qe,calc (mmol/kg) k2 (kg/mmol ·min) R2 h (mg/g ·min)

0.0531 38.22 42.23 0.002136 0.9981 3.8062

0.2656 54.49 47.35 0.001346 0.9540 3.0209

0.5313 69.32 57.13 0.000932 0.9470 3.0624

(c)

C0 (mmol/L)
Intraparticle diffusion

ki (mmol/kg/min0.5) Ci (mmol/kg) R2

0.0531 1.642 15.652 0.7029

0.2656 1.491 21.517 0.5564

0.5313 2.017 21.783 0.6751

enlarged in Figure 3, suggesting the presence of micropores.
Heat-modified CNTs exhibit a type IV adsorption isotherm
according to the IUPAC classification. A clear hysteresis
indicating the production of mesopores. Modified CNT-A
did not have high N2 uptakes compared to as synthesized
samples. CNT-E-AM has the highest N2 uptakes, followed
by as synthesized CNT-E, then CNT-E-HM. Based on pore
size distribution in Figure 4, there are two major peaks at
around 2–4 nm and 10 nm, and these two peaks decreased for
modified CNT-A. However, for modified CNT-E, the volume
decreased for pore size of 2–4 nm but no changes occurred
for pore size of 10 nm.

3.2. Functional Group Analysis. Figure 5 presents the surface
functional groups on the CNTs. After surface modification,
CNTs became more hydrophilic and possessed more active
functional groups hydroxyl (–OH), carboxylic acids and
phenolic groups (O–H), and carbonyl groups (>C=O) at
3445, 1735, and 1400 cm−1, respectively [48]. On the other
hand, hydroxyl functional group is found to be reduced due
to the decomposition of surface oxygen functional group
under heat modification [49]. The increase of basic prop-
erties as quantified from the Boehm method for heat-modi-
fied CNTs is caused by basic groups for instance, pyrones
and chromenes [50] and also electron-rich oxygen-free sites
located on the carbon basal planes [51].

CNTs after acid modification had improved hydrophilic
properties, making them more dispersed in water [52]. This
improvement is due to the addition of oxygen functional
groups as shown in Table 4. The total acidity increased
approximately 44% and 40% for CNT-A and CNT-E,

respectively. However, CNTs become more hydrophobic
after heat treatment as indicated by their reduction in car-
boxyl functional group. Their total acidity decreased 40.3%
and 19.26% for CNT-A and CNT-E, respectively. Heat modi-
fication reduces the oxygen functional groups on CNTs [53],
activated carbon fiber [54], and graphite edge surface [55],
as supported by the FTIR result shown in Figure 5.

3.3. Zeta Potential Analysis. Zeta potential of as synthesized
CNTs and modified CNTs are shown in Figure 6. As the
pH of solution increases, the zeta potential decreases. Under
acid modification, the surface of CNT-A and CNT-E became
acidic, that is, 5.9 and 4.2, respectively. Zeta potential of
CNTs becomes more negative after oxidation, consistent with
the results from Kuo [31] and Li et al. [56]. The pHiep for
CNT-A-HM and CNT-E-HM was 8 and 8.6, respectively,
indicating the basic characteristics of both surfaces. The
pHiep of heat-treated CNTs is affected by the increment of
basic sites (Table 4). Liu et al. [57], Karanfil, and Kilduff [58]
reported that CNTs and activated carbon show basic charac-
teristics, and reduction in polarity after heat treatment.

3.4. Adsorption Equilibrium

3.4.1. Optimum pH. Figures 7(a) and 7(b) show the effect of
pH on adsorption of MB and Phenol onto modified CNT-A
and CNT-E at initial concentration of 10 mg/L. For CNT-MB
system, all modified CNTs have optimum pH of 10 which
is caused by electrostatic interaction between the negative
charge of their surface and positive charge of MB. The zeta
potentials are at pH of 7.8, 5.9, 8, 8.6, 4.2, and 8.6, for
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Table 11: Comparison of the first-order, second-order, and intraparticle diffusion rate constants values for MB adsorption CNT-E-AM at
different initial concentration.

(a)

C0 (mmol/L)
Pseudo-first-order kinetic

qe,exp (mmol/kg) qe,calc (mmol/kg)
k1

(min−1)
R2

0.0156 28.34 16.83 0.0180 0.9758

0.0781 105.41 95.09 0.0153 0.9045

0.1563 106.99 79.73 0.0117 0.9361

(b)

C0 (mmol/L)
Pseudo-second-order kinetic

qe,exp (mmol/kg) qe,calc (mmol/kg) k2 (kg/mmol ·min) R2 h (mg/g ·min)

0.0156 28.34 29.49 0.002559 0.9788 2.2429

0.0782 105.41 113.28 0.000288 0.9897 3.7008

0.1563 106.99 110.87 0.000352 0.9841 4.1673

(c)

C0 (mmol/L)
Intraparticle diffusion

ki (mmol/kg/min0.5) Ci (mmol/kg) R2

0.0156 1.370 9.832 0.8338

0.0781 5.945 14.991 0.9696

0.1563 5.838 18.487 0.9331

CNT-A (as synthesized), CNT-A-AM, CNT-A-HM, CNT-E
(as synthesized) CNT-E-AM, and CNT-E-HM, respectively.

The optimum pH for adsorption of phenol for as-
synthesized CNT-A is at pH = 8 and for as-synthesized
CNT-E is at pH = 4. Adsorption capacity is high at acidic
environment due to dispersion interaction [38]. At this pH
range, phenol is considered as neutral molecule. Above pH of
9.99, phenolate (anionic species) will dominate the solution,
causing the repulsion interaction between negatively charged
surfaces of CNT based on the zeta potential analyzer results
(from −10 to −60 mV) as shown in Figure 6. This condition
explains the decreasing of phenol being adsorbed as it
approaches basic environment. Besides, the presence of OH−

ions on the adsorbents reduces the phenolate ions uptake
[21, 39, 40].

3.4.2. Adsorption Isotherm. The equilibrium experimental
data for adsorbed MB and phenol on modified CNTs were
fitted using the adsorption isotherm equations, namely,
Langmuir, Freundlich, and Redlich-Peterson. In this study,
the best fit isotherm models to the experimental data were
determined using the value of coefficient of determination,
R2 [59]

R2 =
∑(

qe,cal − qe,exp

)2

∑(
qe,cal − qe,exp

)2
+
∑(

qe,cal − qe,exp

)2 , (2)

where qe,cal is the equilibrium capacity obtained from iso-
therm model, qe,exp is the equilibrium capacity obtained from
experiment, and qe,exp is the average of qe,exp.

Besides the value of R2, the applicability of equilibrium
models was verified through the sum of squares error (SSE,
%) [60]:

SSE(%) =

√
√
√
√
∑(

qe,exp − qe,cal

)2

N
× 100%, (3)

where N is the number of data.

3.4.3. Langmuir Isotherm. Langmuir isotherm [61] assumes
that the single adsorbate binds to a single site on the adsorb-
ent, and all the surface sites on the adsorbents have the same
affinity for the adsorbate.

The equation is

qe = QmKLCe

1 + KLCe
, (4)

where Qm is the amount of adsorbate adsorbed per unit
weight of adsorbent in forming a complete monolayer on the
adsorbent’s surface, qe is the amount of adsorbate adsorbed
per unit weight of adsorbent at equilibrium concentration,
Ce, and KL is the Langmuir constant.

The essential characteristics of the Langmuir isotherm
can be described by a separation factor, defined by the follow-
ing equation [62]:

RL = 1
1 + KLC0

, (5)

where RL is the dimensionless equilibrium parameter, and C0

is the initial adsorbate concentration.
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Table 12: Comparison of the first-order, second-order, and intraparticle diffusion rate constants values for MB adsorption on CNT-E-HM
at different initial concentration.

(a)

C0 (mmol/L)
Pseudo-first-order kinetic

qe,exp (mmol/kg) qe,calc (mmol/kg)
k1

(min−1)
R2

0.0156 19.09 16.18 0.0191 0.9733

0.0782 42.63 47.90 0.0088 0.9123

0.1563 38.58 38.88 0.0104 0.8832

(b)

C0 (mmol/L)
Pseudo-second-order kinetic

qe,exp (mmol/kg) qe,calc (mmol/kg) k2 (kg/mmol ·min) R2 h (mmol/kg ·min)

0.0156 19.09 19.76 0.019151 0.9780 7.4742

0.0782 42.63 41.14 0.008479 0.9920 14.3534

0.1563 38.58 35.68 0.011265 0.9680 14.3439

(c)

C0 (mmol/L)
Intraparticle diffusion

ki (mmol/kg/min0.5) Ci (mmol/kg) R2

0.0156 1.378 10.145 0.8067

0.0782 3.688 19.858 0.8682

0.1563 3.408 25.741 0.7939

Tables 5 and 6 summarize the adsorption isotherms plot
in Figure 8. Heat-treated CNTs have the highest adsorption
capacity for both systems. Adsorption process was favorable
based on the separation factor, RL between 0.0009 and
0.3850.

3.4.4. Freundlich Isotherm. The Freundlich model [63] is
based on the distribution of adsorbate between the adsorbent
and aqueous phases at equilibrium.

The basic Freundlich equation is

qe = KF(Ce)
1/n, (6)

where KF is the overall adsorption capacity, and 1/n is
the heterogeneity factor that indicates the strength of bond
energy between adsorbate and adsorbent.

CNT-E-HM has the highest adsorption capacity for MB
and phenol. Based on 1/n values for both adsorbates, surface
of CNT-A-HM is the most heterogeneous since its value is
close to 0 [64].

3.4.5. Redlich-Peterson Isotherm. Redlich and Peterson
model [65] represents the adsorption equilibrium over a
wide concentration range of adsorbate. The adsorbate con-
centration at equilibrium condition is computed as follows:

qe = KRCe

1 + bR(Ce)
βR

, (7)

where βR, KR, and bR are constant parameters, normally, less
than unity. This equation reduces to a linear isotherm at low

surface coverage. In addition, at high adsorbate concentra-
tion, this equation will be equal to the Freundlich isotherm
and when βR = 1, it will be equal to the Langmuir isotherm.

The Langmuir and Redlich-Peterson isotherm fitted the
experimental data for MB and phenol adsorption onto all
adsorbents tested, respectively, as they have the highest R2

and lowest SSE value.

3.5. Adsorption Kinetics. In the liquid phase adsorption proc-
ess, the kinetic study is usually conducted to identify the ki-
netic reaction between the adsorbent and the adsorbate as
well as the time required to achieve the maximum adsorption
amount.

3.5.1. Pseudo-First-Order Kinetic. The pseudo-first-order ki-
netic model is given as [66]

dqt
dt

= k1
(
qe − qt

)
. (8)

Integrating this equation for the boundary conditions t =
0 to t = t and q = 0 to q = qt gives

ln
(
qe − q

) = lnqe − k1t, (9)

where qt is the amounts of adsorbate adsorbed (mg/g) at time
t (min), and k1 is the rate constant of pseudo-first-order-
adsorption (min−1). The validity of the model is checked
by linearizing the plot of ln(qe − qt) versus t where its
slope is the rate constant of pseudo-first order adsorption.
The values of k1 and qe at different initial concentration
are presented in Tables 7, 8, 9, 10, 11, 12, 13, and 14. The
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Table 13: Comparison of the first-order, second-order, and intraparticle diffusion rate constants values for phenol adsorption on CNT-E-
AM at different initial concentration.

(a)

C0 (mmol/L)
Pseudo-first-order kinetic

qe,exp (mmol/kg) qe,calc (mmol/kg)
k1

(min−1)
R2

0.0531 5.44 10.82 0.0103 0.8527

0.2657 45.25 23.63 0.0043 0.6548

0.5313 81.79 33.56 0.0037 0.4587

(b)

C0 (mmol/L)
Pseudo-second-order kinetic

qe,exp (mmol/kg) qe,calc (mmol/kg) k2 (kg/mmol ·min) R2 h (mmol/kg ·min)

0.0531 5.44 5.12 5.12 0.002033 0.7377

0.2656 45.25 41.56 41.56 0.001299 0.9671

0.5313 81.79 74.67 74.67 0.001092 0.9747

(c)

C0 (mmol/L)
Intraparticle diffusion

ki (mmol/kg/min0.5) Ci (mmol/kg) R2

0.0531 4.657 3.100 0.8158

0.2656 20.206 14.201 0.7506

0.5313 19.841 34.175 0.5829

Table 14: Comparison of the first-order, second-order, and intraparticle diffusion rate constants values for phenol adsorption on CNT-E-
HM at different initial concentration.

(a)

C0 (mmol/L)
Pseudo-first-order kinetic

qe,exp (mmol/kg) qe,calc (mmol/kg) k1 (min−1) R2

0.0531 19.09 12.88 0.0067 0.8762

0.2656 42.63 15.77 0.0053 0.6746

0.5313 38.58 21.87 0.0420 0.7252

(b)

C0 (mmol/L)
Pseudo-second-order kinetic

qe,exp (mmol/kg) qe,calc (mmol/kg) k2 (kg/mmol ·min) R2 h (mmol/kg ·min)

0.0531 19.09 19.76 0.0192 0.9780 7.4742

0.2656 42.63 41.14 0.0085 0.9920 14.3534

0.5313 38.58 35.68 0.0112 0.9680 14.3439

(c)

C0 (mmol/L)
Intraparticle diffusion

ki (mmol/kg/min0.5) Ci (mmol/kg) R2

0.0531 0.866 3.762 0.9202

0.2656 1.294 19.884 0.5596

0.5313 1.412 10.634 0.7810

correlation coefficient, R2, is not high. Figures 9 and 10(a)
show that the data only abides the model for the first 50
mins. According to Ho and McKay (1999) [67], the first-
order kinetic model is generally applicable only over the ini-
tial stage of the adsorption processes.

3.5.2. Pseudo-Second-Order Kinetic. This model assumes that
the differences between the average solid phase concentration
at time t (min), qt (mmol/kg), and the equilibrium concen-
tration, qe (mmol/kg), is the driving force for adsorption and
the overall adsorption rate is proportional to the square of



Journal of Nanomaterials 13

Table 15: Previously reported adsorption capacities of various adsorbents for MB.

Adsorbent Qm (mmol/kg) Reference

Pyrolyzed petrified sediment 7.47 Aroguz et al. [9]

Coir pith carbon 18.35 Kavitha and Namasivayam [10]

Salts-treated beech sawdust 30.33 ± 0.60–48.77 ± 2.40 Batzias and Sidiras [11]

Garlic peel 258.37–446.65 Hameed and Ahmad [12]

Activated desert plant 165.70 Bestani et al. [1]

Activated carbons 31.921–51.37 Karagöz et al. [13]

Wheat shells 51.77 Bulut and Aydin [14]

Spent coffee grounds 58.56 Franca et al. [15]

Acid treated-CNTs 110.68–202.28 Yao et al. [16]

As synthesized CNTs 82.01–103.70 This work

Acid-treated CNTs 80.07–99.83 This work

Heat-treated CNTs 83.76–182.71 This work

Table 16: Previously reported adsorption capacities of various adsorbents for phenol.

Adsorbent Qm (mmol/kg) Reference

Corn grain-based activated carbons 2592.71 Park et al. [17]

Activated carbons 785.36–2530.02 Fierro et al. [18]

Physiochemical-activated coconut shell 2186.80 Mohd Din et al. [19]

Granular activated carbon 2529.91–2656.47 Hamdaoui and Naffrechoux [20]

Carbon cryogel microspheres 1312.29–2501.33 Kim et al. [21]

Acid-treated CNTs 386.78 ± 2.40–2380.19 ± 5.00 Lin and Xing [22]

Heated CNT 169.91 Diaz-Flores et al. [23]

Oxidized CNTs 436.72 ± 1.59 Shen et al. [24]

Acid-treated CNTs 168.74 Liao et al. [25]

As-synthesized CNTs 52.49–120.39 This work

Acid-treated CNT 24.76–58.55 This work

Heat-treated CNT 52.92–181.06 This work

the driving force [67]. The pseudo-second-order equation
based on adsorption equilibrium capacity is expressed as [68]

dqt
dt

= k1
(
qe − qt

)2
. (10)

Rearranging the variables in (10) gives

dq
(
qe − q

)2 = k2dt. (11)

Taking into account the boundary conditions t = 0 to t = t
and q = 0 to q = qt , the integrated linear form of (11) can
be rearranged to obtain(12)

t

q
= 1

k2q2
e

+
t

qe
, (12)

where k2 is pseudo-second-order constant (kg/mmol/min) to
be used to calculate the initial adsorption rate as below

h = k2q
2
e . (13)

The values of qe, k2, and h obtained from this rate model at
different concentration are given in Tables 7 to 14. The high
R2 value indicates that the experimental data fit the pseudo-
second-order model. In conclusion, chemical adsorption
might be the rate-limiting step, by either valent forces,
through sharing of electrons between adsorbent and sorbate,
or covalent forces, through the exchange of electrons between
the parties involved [69]. The similar result also found using
CNTs as adsorbents [16, 31, 70].

The pseudo-second-order constant is the highest for
phenol-CNT-A which is 0.019151× kg/mmol ·min, indicat-
ing the fastest mobility of phenol because the film resistance
is small as shown by the boundary layer thickness, Ci

from intraparticle diffusion model, 3.762 mmol/kg [71]. The
molecular size of phenol is also smaller compared to MB as
shown in Table 1. Based on the study of Lu et al. [72], smaller
molecules diffused faster than the bigger ones. The rate
constants of the pseudo-second-order model (k2) decreased
as the initial concentration of MB and phenol in adsorption
systems increased. The same phenomenon was also reported
by Kuo et al. [70], and Hameed and Rahman [73]. At lower
concentration, the competition for the adsorption surface
sites is lower compared to higher concentration.
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Figure 9: Plot of (a) pseudo-first-order-kinetic model, (b) pseudo-
second-order-kinetic model, and (c) intraparticle diffusion model
for the adsorption of 50 mg/L of MB onto CNTs. � CNT-E-HM; �
CNT-E (as synthesized); + CNT-E-AM; × CNT-A (as synthesized);
� CNT-A-HM; © CNT-A-AM. Each point is the average value of
triplicate samples. Error bars represent the range.

3.5.3. Intraparticle Diffusion Kinetic. The intraparticle diffu-
sion model to elucidate the diffusion mechanism is originally
developed by Weber and Morris [74]

qt = kpt0.5 + Ci, (14)

where Ci is the intercept, and kp is the intraparticle diffusion
rate constant (mg/g min1/2), evaluated from the slope of the
linearized plot of qt versus t1/2.

The regression plot of qt versus t0.5 in Figures 9(b) and
10(b) indicates linearity for all of the adsorbents tested, but
it does not pass through the origin. This suggested that intra-
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Figure 10: Plot of (a) pseudo-first-order-kinetic model, (b)
pseudo-second-order-kinetic model, and (c) intraparticle diffusion
model for the adsorption of 50 mg/L of phenol onto CNTs.� CNT-
E-HM;�CNT-E (as synthesized); + CNT-E-AM;×CNT-A (as syn-
thesized);� CNT-A-HM;© CNT-A-AM. Each point is the average
value of triplicate samples. Error bars represent the range.

particle diffusion was involved in adsorption, but it was not
the only rate-controlling step.

3.6. Comparison of Adsorption Capacity. The maximum ad-
sorption capacity of MB and phenol onto acid-modified
CNTs decreased 3–9% as compared to as synthesized CNTs.
For MB, there is an ionic repulsion between the CNTs mod-
ified with HNO3 and MB [75]. The production of acidic oxy-
gen functional groups on the CNTs surface (refer to Table 4)
extracts the electrons from the π band of the carbon. As a
result, the interaction between the MB molecules and the
CNTs is reduced. The same result obtained for the adsorption
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of MB onto acid-modified commercial activated carbons by
Wang et al. [76] and Tan et al. [77].

The CNTs surface contains more acidic functional group
with a decrease of hydroxide groups [76]. As for phenol, the
increase of surface oxygen group, especially carboxylic group,
makes the surface of acid-modified CNTs more hydrophil-
ic. Through H bonding, the formation of water clusters nega-
tively affects the accessibility and affinity of phenol, therefore,
reducing the adsorption capacity [78, 79].

The more basic surface of the heat-treated CNTs pro-
motes the high adsorption capacity of MB and phenol. For
MB, the dispersive interactions between the π electrons on
the surface of the basic carbon and the free electrons of the
cationic dye molecule present in the aromatic rings and mul-
tiple bonds enhancing their adsorption [80]. As for phenol,
adsorption mechanism of “donor-acceptor complex” con-
tributes to its higher adsorption, where phenol acts as elec-
tron acceptor and basic surface of carbon acts as donor [66].
The adsorption capacities of MB and phenol on CNTs are as
follows:

Heat-treated CNTs > As synthesized CNTs

> Acid-treated CNTs.
(15)

Based on Tables 15 and 16, the adsorption capacities ob-
tained in this study are comparable to various adsorbent and
activated carbon, suggesting the potential usage of CNTs for
wastewater treatment.

3.7. Comparison of Adsorption of MB and Phenol. In general,
MB and phenol can adsorb well onto these types of CNTs.
In MB system, the adsorption is enhanced by electrostatic
interaction. As for phenol, the adsorption is dominated by
π-π dispersion [81]. The molecular size of MB and phenol is
small enough to enter the pore size of CNTs which are 3.28
and 2.42 nm for CNT-A and CNT-E, respectively. Further-
more, both the adsorbates structures are planar, which is
beneficial for face-face conformation [82].

The MB adsorption onto the adsorbents is influenced by
the mesopores whereas phenol adsorption is enhanced by the
micropores [83]. Based on the N2 adsorption isotherm as
indicated in Figures 2(a) and 2(b), CNTs contain more meso-
pores. Therefore, the MB adsorption onto both adsorbents
is higher than phenol adsorption. This work demonstrates
that CNTs are suitable adsorbents for bigger molecular size
adsorbate like MB compared to phenol as shown in Table 1.

4. Conclusion

A comparative study for different surface modifications of
CNTs has been studied. The pseudo-second-order-kinetic
model equation is the best to describe adsorption of MB and
phenol on CNTs. Intraparticle diffusion was also identified to
be one of the rate-controlling factors. By considering R2 and
SSE values, Langmuir and Redlich-Peterson isotherm fitted
the experimental data for MB and phenol adsorption onto
all adsorbents tested, respectively. Both surface modifications
reduced the surface area of CNTs. The MB and phenol
adsorption isotherms at room temperature show that the

acid-modified CNTs have the lowest adsorption capacity,
resulting from reduction in their surface area and the exis-
tence of abundant of surface oxygen functional groups. How-
ever, heat-treated CNTs have the highest adsorption capacity
for MB and phenol, contributing by the basicity surface, in
spite of their low surface area.
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