16,403 research outputs found

    High temperatures effect on morpho-physiological indicators in common bean (Phaseolus vulgaris L.) plants during the germination and growth in non-optimum season

    Get PDF
    The knowledge about high temperature effect on plant crop is important for adaptation strategies to Climate Change. For this reason the aim of the paper was to analyze its abiotic effect on common bean cultivation in a Red Ferralitic soil. A sowing of twelve varieties was performed in non-optimum season (high heat environment) during three years: 2013, 2014 and 2015 through an alpha-Latin design using three replicates per accession. The number of germinated plants was measured within the first 11 days after sowing to obtain the survival percentage. In the same way absolute (AGR) and relative (RGR) growth rate between 21 and 30 days and the plant height from 20 to 70 days with measurement ranges of 10 and 15 days were also evaluated and plotted by a logistic model. The values of daily mean temperature (DMT) were registered to calculate the accumulative temperature during the germination and growth phases. For the statistical evaluation, AGR and RGR were analyzed by one-way analysis of variance and a Tukey comparison where significance was defined with a probability level of P<0.05. The results showed that plant survival percentage was significantly affected by increasing temperature following a sigmoid model, where differences among varieties were observed, while a prediction of survival behavior was also carried out for extreme values of temperature. The model corroborated that DMT above 28 C decreases the survival percentage until values less than 30%. On the other hand the most sensible varieties in the germination stage showed a higher relative growth rate which contributes for understanding the physiological effect of thermal stress in common bean plants

    Conformational analysis of a TADDOL-based phosphoramidite P,N ligand in a palladium(II) η3-π-allyl complex

    Get PDF
    Highlights Two lowest energy conformers differ in allyl conformation, conformer with exo allyl having lower energy. Lowest energy conformer has “chair” conformation of 7-membered ring and “edge-on/face-on/face-on/edge-on” array of pH groups. Next lowest energy conformer with exo allyl has alternating “edge-on/face-on” arrangement and “twist” 7-membered ring. Changes in “chair/twist” conformations with different substrates is possible due to 2.4 kcal/mol energy difference. These results explain stereochemical outcome of the reaction, and will guide design of new catalysts. Abstract The most stable conformations of a TADDOL-based phosphoramidite P,N ligand coordinated to a palladium(II) η3-π-allyl fragment have been investigated using molecular mechanical and quantum mechanical calculations. The conformational analysis initially generated 53 unique structures within 5 kcal/mol and subsequent geometry optimization narrowed the number of low-energy conformers down to 13. The two lowest energy conformers differ mainly in the conformation of the allyl group. The conformer with an endo allyl group has a slightly higher relative energy than the conformer with an exo allyl group. Comparison of the main geometric parameters around the Pd(II) metal center in the two lowest energy conformers with the available X-ray single crystal structures of Pd(II) η3-π-allyl complexes of P,N ligands shows a good agreement in both the bond lengths and angles. The lowest energy structure has a “chair” conformation of the seven-membered phospha-dioxa-cycloheptane ring and “edge-on/face-on/face-on/edge-on” arrangement of the phenyl rings. The next lowest energy conformer with an exo allyl group has a “twist” conformation of the seven-membered ring and alternating “edge-on” and “face-on” arrangement of the phenyl rings as anticipated from the Knowles “edge-on/face-on” concept. The results of this study support published hypotheses regarding the origin of the chiral induction in the enantioselective Pd(0) catalyzed intramolecular allylic alkylation reaction by the repulsive interactions between one of the phenyl groups in the seven-membered ring in the lowest energy conformer of the ligand with the substrate. As such, the results of this research can be used to guide the synthesis of new and improved variants of this important catalyst family

    PTRF acts as an adipokine contributing to adipocyte dysfunctionality and ectopic lipid deposition

    Get PDF
    Adipose tissue (AT) expands under obesogenic conditions. Yet, when the growth exceeds a certain limit, AT becomes dysfunctional and surplus lipids start depositing ectopically. Polymerase I and transcription release factor (PTRF) has been proposed as a mechanism leading to a dysfunctional AT by decreasing the adipogenic potential of human adipocyte precursors. However, whether or not PTRF can be secreted by the adipocytes into the bloodstream is not yet known. For this work, PTRF presence was investigated in plasma. We also produced a recombinant PTRF (rPTRF) and examined its impact on the functional interactions between the adipocyte and the hepatocyte in vitro. We demonstrated that PTRF can be found in human plasma, and is at least in part, carried by exosomes. In vitro treatment with rPTRF increased the hypertrophy and senescence of 3T3-L1 adipocytes. In turn, those rPTRF-treated adipocytes increased lipid accumulation in hepatocytes. Lastly, we found a positive correlation between circulating PTRF and the concentration of PTRF in the visceral fat depot. All these findings point toward the presence of an enlarged and dysfunctional visceral adipose tissue which secretes PTRF. This circulating PTRF behaves as an adipokine and may partially contribute to the well-known detrimental effects of visceral fat accumulation

    Thermal and phase transformations analysis in a PREMOMET® steel

    Get PDF
    Thermal analysis in a PREMOMET® steel has been performed by differential scanning calorimetry (DSC) and highresolution dilatometry. The phase transformation temperatures (Ac1, Ac3, Ms and Mf) of this steel were obtained by the two methods at different heating rates showing good agreement between both techniques. The enthalpy of α-γ transformation for this steel was measured using the thermograms acquired by DSC and microstructure was analyzed by scanning electron microscope (SEM). The results showed that this steel retained a martensitic structure for all conditions

    Modeling of the Division Point of Different Propagation Mechanisms in the Near-Region Within Arched Tunnels

    Get PDF
    An accurate characterization of the near-region propagation of radio waves inside tunnels is of practical importance for the design and planning of advanced communication systems. However, there has been no consensus yet on the propagation mechanism in this region. Some authors claim that the propagation mechanism follows the free space model, others intend to interpret it by the multi-mode waveguide model. This paper clarifies the situation in the near-region of arched tunnels by analytical modeling of the division point between the two propagation mechanisms. The procedure is based on the combination of the propagation theory and the three-dimensional solid geometry. Three groups of measurements are employed to verify the model in different tunnels at different frequencies. Furthermore, simplified models for the division point in five specific application situations are derived to facilitate the use of the model. The results in this paper could help to deepen the insight into the propagation mechanism within tunnel environments

    Short-term effectiveness of a mobile phone app for increasing physical activity and adherence to the mediterranean diet in primary care: A randomized controlled trial (EVIDENT II study)

    Get PDF
    Background: The use of mobile phone apps for improving lifestyles has become generalized in the population, although little is still known about their effectiveness in improving health. Objective: We evaluate the effect of adding an app to standard counseling on increased physical activity (PA) and adherence to the Mediterranean diet, 3 months after implementation. Methods: A randomized, multicenter clinical trial was carried out. A total of 833 participants were recruited in six primary care centers in Spain through random sampling: 415 in the app+counseling group and 418 in the counseling only group. Counseling on PA and the Mediterranean diet was given to both groups. The app+counseling participants additionally received training in the use of an app designed to promote PA and the Mediterranean diet over a 3-month period. PA was measured with the 7-day Physical Activity Recall (PAR) questionnaire and an accelerometer; adherence to the Mediterranean diet was assessed using the Mediterranean Diet Adherence Screener questionnaire. Results: Participants were predominantly female in both the app+counseling (249/415, 60.0%) and counseling only (268/418, 64.1%) groups, with a mean age of 51.4 (SD 12.1) and 52.3 (SD 12.0) years, respectively. Leisure-time moderate-to-vigorous physical activity (MVPA) by 7-day PAR increased in the app+counseling (mean 29, 95% CI 5-53 min/week; P=.02) but not in the counseling only group (mean 17.4, 95% CI ''18 to 53 min/week; P=.38). No differences in increase of activity were found between the two groups. The accelerometer recorded a decrease in PA after 3 months in both groups: MVPA mean ''55.3 (95% CI ''75.8 to ''34.9) min/week in app+counseling group and mean ''30.1 (95% CI ''51.8 to ''8.4) min/week in counseling only group. Adherence to the Mediterranean diet increased in both groups (8.4% in app+counseling and 10.4% in counseling only group), with an increase in score of 0.42 and 0.53 points, respectively (P<.001), but no difference between groups (P=.86). Conclusions: Leisure-time MVPA increased more in the app+counseling than counseling only group, although no difference was found when comparing the increase between the two groups. Counseling accompanied by printed materials appears to be effective in improving adherence to the Mediterranean diet, although the app does not increase adherence

    Data-driven discovery of statistically relevant information in quantum simulators

    Get PDF
    Quantum simulators offer powerful means to investigate strongly correlated quantum matter. However, interpreting measurement outcomes in such systems poses significant challenges. Here, we present a theoretical framework for information extraction in synthetic quantum matter, illustrated for the case of a quantum quench in a spinor Bose-Einstein condensate experiment. Employing nonparametric unsupervised learning tools that provide different measures of information content, we demonstrate a theory-agnostic approach to identify dominant degrees of freedom. This enables us to rank operators according to their relevance, akin to effective field theory. To characterize the corresponding effective description, we then explore the intrinsic dimension of data sets as a measure of the complexity of the dynamics. This reveals a simplification of the data structure, which correlates with the emergence of time-dependent universal behavior in the studied system. Our assumption-free approach can be immediately applied in a variety of experimental platforms
    • …
    corecore