345 research outputs found

    Giant Superfluorescent Bursts from a Semiconductor Magnetoplasma

    Full text link
    Currently, considerable resurgent interest exists in the concept of superradiance (SR), i.e., accelerated relaxation of excited dipoles due to cooperative spontaneous emission, first proposed by Dicke in 1954. Recent authors have discussed SR in diverse contexts, including cavity quantum electrodynamics, quantum phase transitions, and plasmonics. At the heart of these various experiments lies the coherent coupling of constituent particles to each other via their radiation field that cooperatively governs the dynamics of the whole system. In the most exciting form of SR, called superfluorescence (SF), macroscopic coherence spontaneously builds up out of an initially incoherent ensemble of excited dipoles and then decays abruptly. Here, we demonstrate the emergence of this photon-mediated, cooperative, many-body state in a very unlikely system: an ultradense electron-hole plasma in a semiconductor. We observe intense, delayed pulses, or bursts, of coherent radiation from highly photo-excited semiconductor quantum wells with a concomitant sudden decrease in population from total inversion to zero. Unlike previously reported SF in atomic and molecular systems that occur on nanosecond time scales, these intense SF bursts have picosecond pulse-widths and are delayed in time by tens of picoseconds with respect to the excitation pulse. They appear only at sufficiently high excitation powers and magnetic fields and sufficiently low temperatures - where various interactions causing decoherence are suppressed. We present theoretical simulations based on the relaxation and recombination dynamics of ultrahigh-density electron-hole pairs in a quantizing magnetic field, which successfully capture the salient features of the experimental observations.Comment: 21 pages, 4 figure

    Theory of exciton-exciton correlation in nonlinear optical response

    Full text link
    We present a systematic theory of Coulomb interaction effects in the nonlinear optical processes in semiconductors using a perturbation series in the exciting laser field. The third-order dynamical response consists of phase-space filling correction, mean-field exciton-exciton interaction, and two-exciton correlation effects expressed as a force-force correlation function. The theory provides a unified description of effects of bound and unbound biexcitons, including memory-effects beyond the Markovian approximation. Approximations for the correlation function are presented.Comment: RevTex, 35 pages, 10 PostScript figs, shorter version submitted to Physical Review

    Spectroscopic survey of the Galaxy with Gaia I. Design and performance of the Radial Velocity Spectrometer

    Get PDF
    The definition and optimisation studies for the Gaia satellite spectrograph, the Radial Velocity Spectrometer (RVS), converged in late 2002 with the adoption of the instrument baseline. This paper reviews the characteristics of the selected configuration and presents its expected performance. The RVS is a 2.0 by 1.6 degree integral field spectrograph, dispersing the light of all sources entering its field of view with a resolving power R=11 500 over the wavelength range [848, 874] nm. The RVS will continuously and repeatedly scan the sky during the 5 years of the Gaia mission. On average, each source will be observed 102 times over this period. The RVS will collect the spectra of about 100-150 million stars up to magnitude V~17-18. At the end of the mission, the RVS will provide radial velocities with precisions of ~2 km/s at V=15 and \~15-20 km/s at V=17, for a solar metallicity G5 dwarf. The RVS will also provide rotational velocities, with precisions (at the end of the mission) for late type stars of sigma_vsini ~5 km/s at V~15 as well as atmospheric parameters up to V~14-15. The individual abundances of elements such as Silicon and Magnesium, vital for the understanding of Galactic evolution, will be obtained up to V~12-13. Finally, the presence of the 862.0 nm Diffuse Interstellar Band (DIB) in the RVS wavelength range will make it possible to derive the three dimensional structure of the interstellar reddening.Comment: 17 pages, 9 figures, accepted for publication in MNRAS. Fig. 1,2,4,5, 6 in degraded resolution; available in full resolution at http://blackwell-synergy.com/links/doi/10.1111/j.1365-2966.2004.08282.x/pd

    Polariton propagation in weak confinement quantum wells

    Full text link
    Exciton-polariton propagation in a quantum well, under centre-of-mass quantization, is computed by a variational self-consistent microscopic theory. The Wannier exciton envelope functions basis set is given by the simple analytical model of ref. [1], based on pure states of the centre-of-mass wave vector, free from fitting parameters and "ad hoc" (the so called additional boundary conditions-ABCs) assumptions. In the present paper, the former analytical model is implemented in order to reproduce the centre-of-mass quantization in a large range of quantum well thicknesses (5a_B < L < inf.). The role of the dynamical transition layer at the well/barrier interfaces is discussed at variance of the classical Pekar's dead-layer and ABCs. The Wannier exciton eigenstates are computed, and compared with various theoretical models with different degrees of accuracy. Exciton-polariton transmission spectra in large quantum wells (L>> a_B) are computed and compared with experimental results of Schneider et al.\cite{Schneider} in high quality GaAs samples. The sound agreement between theory and experiment allows to unambiguously assign the exciton-polariton dips of the transmission spectrum to the pure states of the Wannier exciton center-of-mass quantization.Comment: 15 pages, 15 figures; will appear in Phys.Rev.

    Ultrafast Coulomb-induced dynamics of 2D magnetoexcitons

    Full text link
    We study theoretically the ultrafast nonlinear optical response of quantum well excitons in a perpendicular magnetic field. We show that for magnetoexcitons confined to the lowest Landau levels, the third-order four-wave-mixing (FWM) polarization is dominated by the exciton-exciton interaction effects. For repulsive interactions, we identify two regimes in the time-evolution of the optical polarization characterized by exponential and {\em power law} decay of the FWM signal. We describe these regimes by deriving an analytical solution for the memory kernel of the two-exciton wave-function in strong magnetic field. For strong exciton-exciton interactions, the decay of the FWM signal is governed by an antibound resonance with an interaction-dependent decay rate. For weak interactions, the continuum of exciton-exciton scattering states leads to a long tail of the time-integrated FWM signal for negative time delays, which is described by the product of a power law and a logarithmic factor. By combining this analytic solution with numerical calculations, we study the crossover between the exponential and non-exponential regimes as a function of magnetic field. For attractive exciton-exciton interaction, we show that the time-evolution of the FWM signal is dominated by the biexcitonic effects.Comment: 41 pages with 11 fig

    Color adjectives, standards, and thresholds: an experimental investigation

    Get PDF
    Are color adjectives (“red”, “green”, etc.) relative adjectives or absolute adjectives? Existing theories of the meaning of color adjectives attempt to answer that question using informal (“armchair”) judgments. The informal judgments of theorists conflict: it has been proposed that color adjectives are absolute with standards anchored at the minimum degree on the scale, that they are absolute but have near- midpoint standards, and that they are relative. In this paper we report two experiments, one based on entailment patterns and one based on presupposition accommodation, that investigate the meaning of scalar adjectives. We find evidence confirming the existence of subgroups of the population who operate with different standards for color adjectives. The evidence of interpersonal variation in where standards are located on the relevant scale and how those standards can be adjusted indicates that the existing theories of the meaning of color adjectives are at best only partially correct. We also find evidence that paradigmatic relative adjectives (“tall”, “wide”) behave in ways that are not predicted by the standard theory of scalar adjectives. We discuss several different possible explanations for this unexpected behavior. We conclude by discussing the relevance of our findings for philosophical debates about the nature and extent of semantically encoded context sensitivity in which color adjectives have played a key role

    One-Way Traffic of a Viral Motor Channel for Double-Stranded DNA Translocation

    Get PDF
    ABSTRACT Linear double-stranded DNA (dsDNA) viruses package their genome into a procapsid using an ATP-driven nanomotor. Here we report that bacteriophage phi29 DNA packaging motor exercises a one-way traffic property for dsDNA translocation from N-terminal entrance to C-terminal exit with a valve mechanism in DNA packaging, as demonstrated by voltage ramping, electrode polarity switching, and sedimentation force assessment. Without the use of gating control as found in other biological channels, the observed single direction dsDNA transportation provides a novel system with a natural valve to control dsDNA loading and gene delivery in bioreactors, liposomes, or high throughput DNA sequencing apparatus
    corecore