12 research outputs found

    New insights into the kinetic target-guided synthesis of protein ligands

    No full text
    International audienceThe kinetic target-guided synthesis (KTGS) strategy is an unconventional discovery approach that takes advantage of the presence of the biological target itself in order to irreversibly assemble the best inhibitors from an array of building blocks. This strategy has grown over the last two decades notably after the introduction of the in situ click chemistry concept by Sharpless and colleagues in the early 2000s based on the use of the Huisgen cycloaddition between terminal alkynes and azides. KTGS is a captivating area of research offering an unprecedented and powerful strategy to probe the macromolecular complexity and dynamics of biological targets. After a brief introduction listing all chemical ligation reactions reported to date in KTGS, this review focuses on the last five years' progress to expand the repertoire of the click or “click-like” tool box targeting proteins, as well as to overcome limitations arising in particular from false negatives, i.e. potent ligands that are not formed, or formed in undetectable trace amounts. Furthermore, we wish to analyze the new twists and novelties described in some of these applications in order to better understand the conditions that govern this strategy and the extent to which it can be developed and generalized for a more efficient process

    Green communication for next-generation wireless systems: optimization strategies, challenges, solutions, and future aspects

    No full text
    Wireless sensor networks (WSNs) have emerged as a backbone technology for the wireless communication era. The demand for WSN is rapidly increasing due to their major role in various applications with a wider deployment and omnipresent nature. The WSN is rapidly integrated into a large number of applications such as industrial, security, monitoring, tracking, and applications in home automation. The widespread use in many different areas attracts research interest in WSNs. Therefore, researchers are taking initiatives in exploring innovation day by day particularly towards the Internet of Things (IoT). But, WSN is having lots of challenging issues that need to be addressed, and the inherent characteristics of WSN severely affect the performance. Energy constraints are one of the primary issues that require urgent attention from the research community. Optimal energy optimization strategies are needed to counter the issue of energy constraints. Although one of the most appropriate schemes for handling energy constraints issues is the appropriate energy harvesting technique, the optimal energy optimization strategies should be coupled together for effectively utilizing the harvested energy. In this high-level systematic and taxonomical survey, we have organized the energy optimization strategies for EH-WSNs into eleven factors, namely, radio optimization schemes, optimizing the energy harvesting process, data reduction schemes, schemes based on cross-layer optimization, schemes based on cross-layer optimization, sleep/wake-up policies, schemes based on load balancing, schemes based on optimization of power requirement, optimization of communication mechanism, schemes based on optimization of battery operations, mobility-based schemes, and finally energy balancing schemes. We have also prepared the summarized view of various protocols/algorithms with their remarkable details. This systematic and taxonomy survey also provides a progressive detailed overview and classification of various optimization challenges for the EH-WSNs that require attention from the researcher followed by a survey of corresponding solutions for corresponding optimization issues. Further, this systematic and taxonomical survey also provides a deep analysis of various emerging energy harvesting technologies in the last twenty years of the era
    corecore