493 research outputs found

    Present Status of the [18F]FDG Production at CYRIC

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Dynamic Ad-Dimer Twisting Assisted Nanowire Self-Assembly on Si(001)

    Get PDF
    Based on ab initio total energy calculation, we show that a dynamic ad-dimer twisting assisted (DATA) process plays a crucial role in facilitating a novel structural reconstruction involving surface and subsurface atoms on Si(001). It leads to self-assembly of long nanowires of group-V elements (Bi, Sb) in the trenches of surface dimer vacancy lines (DVLs) with a characteristic double-dimer configuration. The key to this is the lowering of the kinetic barrier by the DATA process in conjunction with a favorable interaction between ad-dimers and step edges in DVLs. The present results provide an excellent account for experimental observations and reveal the atomistic origin and the dynamic transformation path for nanowire self-assembly on Si(001)

    Quantum-well states in ultrathin Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces

    Full text link
    Ag(111) films were deposited at room temperature onto H-passivated Si(111)-(1x1) substrates, and subsequently annealed at 300 C. An abrupt non-reactive Ag/Si interface is formed, and very uniform non-strained Ag(111) films of 6-12 monolayers have been grown. Angle resolved photoemission spectroscopy has been used to study the valence band electronic properties of these films. Well-defined Ag sp quantum-well states (QWS) have been observed at discrete energies between 0.5-2eV below the Fermi level, and their dispersions have been measured along the GammaK, GammaMM'and GammaL symmetry directions. QWS show a parabolic bidimensional dispersion, with in-plane effective mass of 0.38-0.50mo, along the GammaK and GammaMM' directions, whereas no dispersion has been found along the GammaL direction, indicating the low-dimensional electronic character of these states. The binding energy dependence of the QWS as a function of Ag film thickness has been analyzed in the framework of the phase accumulation model. According to this model, a reflectivity of 70% has been estimated for the Ag-sp states at the Ag/H/Si(111)-(1x1) interface.Comment: 6 pages, 6 figures, submitted to Phys. Rev.

    Routine Production of PET Radiopharmaceuticals at CYRIC in 1992

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    High-precision CTE measurement of hybrid C/SiC composite for cryogenic space telescopes

    Full text link
    This paper presents highly precise measurements of thermal expansion of a "hybrid" carbon-fiber reinforced silicon carbide composite, HB-Cesic\textregistered - a trademark of ECM, in the temperature region of \sim310-10K. Whilst C/SiC composites have been considered to be promising for the mirrors and other structures of space-borne cryogenic telescopes, the anisotropic thermal expansion has been a potential disadvantage of this material. HB-Cesic\textregistered is a newly developed composite using a mixture of different types of chopped, short carbon-fiber, in which one of the important aims of the development was to reduce the anisotropy. The measurements indicate that the anisotropy was much reduced down to 4% as a result of hybridization. The thermal expansion data obtained are presented as functions of temperature using eighth-order polynomials separately for the horizontal (XY-) and vertical (Z-) directions of the fabrication process. The average CTEs and their dispersion (1{\sigma}) in the range 293-10K derived from the data for the XY- and Z-directions were 0.805±\pm0.003\times106^{-6} K1^{-1} and 0.837\pm0.001\times106^{-6} K1^{-1}, respectively. The absolute accuracy and the reproducibility of the present measurements are suggested to be better than 0.01\times106^{-6} K1^{-1} and 0.001\times(10)^{-6} K^{-1}, respectively. The residual anisotropy of the thermal expansion was consistent with our previous speculation regarding carbon-fiber, in which the residual anisotropy tended to lie mainly in the horizontal plane.Comment: Accepted by Cryogeincs. 12 pages, 3 figures, 1 tabll

    Relaxation of classical many-body hamiltonians in one dimension

    Full text link
    The relaxation of Fourier modes of hamiltonian chains close to equilibrium is studied in the framework of a simple mode-coupling theory. Explicit estimates of the dependence of relevant time scales on the energy density (or temperature) and on the wavenumber of the initial excitation are given. They are in agreement with previous numerical findings on the approach to equilibrium and turn out to be also useful in the qualitative interpretation of them. The theory is compared with molecular dynamics results in the case of the quartic Fermi-Pasta-Ulam potential.Comment: 9 pag. 6 figs. To appear in Phys.Rev.

    Formation and Annihilation Dynamics of Benzene Cluster Cations in Neat Liquid Benzene

    Get PDF
    第13回化学反応討論会, 1997年5月28日-30日, 北陸先端大学・石川ハイテク交流センター(金沢
    corecore