853 research outputs found

    Control of the geometric phase and pseudo-spin dynamics on coupled Bose-Einstein condensates

    Full text link
    We describe the behavior of two coupled Bose-Einstein condensates in time-dependent (TD) trap potentials and TD Rabi (or tunneling) frequency, using the two-mode approach. Starting from Bloch states, we succeed to get analytical solutions for the TD Schroedinger equation and present a detailed analysis of the relative and geometric phases acquired by the wave function of the condensates, as well as their population imbalance. We also establish a connection between the geometric phases and constants of motion which characterize the dynamic of the system. Besides analyzing the affects of temporality on condensates that differs by hyperfine degrees of freedom (internal Josephson effect), we also do present a brief discussion of a one specie condensate in a double-well potential (external Josephson effect).Comment: 1 tex file and 11 figures in pdf forma

    An Optimal Self-Stabilizing Firing Squad

    Full text link
    Consider a fully connected network where up to tt processes may crash, and all processes start in an arbitrary memory state. The self-stabilizing firing squad problem consists of eventually guaranteeing simultaneous response to an external input. This is modeled by requiring that the non-crashed processes "fire" simultaneously if some correct process received an external "GO" input, and that they only fire as a response to some process receiving such an input. This paper presents FireAlg, the first self-stabilizing firing squad algorithm. The FireAlg algorithm is optimal in two respects: (a) Once the algorithm is in a safe state, it fires in response to a GO input as fast as any other algorithm does, and (b) Starting from an arbitrary state, it converges to a safe state as fast as any other algorithm does.Comment: Shorter version to appear in SSS0

    Statistical properties of the deviations of f 0 F 2 from monthly medians

    Get PDF
    The deviations of hourly f 0 F 2 from monthly medians for 20 stations in Europe during the period 1958-1998 are studied. Spectral analysis is used to show that, both for original data (for each hour) and for the deviations from monthly medians, the deterministic components are the harmonics of 11 years (solar cycle), 1 year and its harmonics, 27 days and 12 h 50.49 m (2nd harmonic of lunar rotation period L 2 ) periodicities. Using histograms for one year samples, it is shown that the deviations from monthly medians are nearly zero mean (mean < 0.5) and approximately Gaussian (relative difference range between %10 to %20) and their standard deviations are larger for daylight hours (in the range 5-7). It is shown that the amplitude distribution of the positive and negative deviations is nearly symmetrical at night hours, but asymmetrical for day hours. The positive and negative deviations are then studied separately and it is observed that the positive deviations are nearly independent of R12 except for high latitudes, but negative deviations are modulated by R12 . The 90% confidence interval for negative deviations for each station and each hour is computed as a linear model in terms of R12. After correction for local time, it is shown that for all hours the confidence intervals increase with latitude but decrease above 60N. Long-term trend analysis showed that there is an increase in the amplitude of positive deviations from monthly means irrespective of the solar conditions. Using spectral analysis it is also shown that the seasonal dependency of negative deviations is more accentuated than the seasonal dependency of positive deviations especially at low latitudes. In certain stations, it is also observed that the 4th harmonic of 1 year corresponding to a periodicity of 3 months, which is missing in f 0 F 2 data, appears in the spectra of negative variations

    Leaf Water Content and Hormone Effects on Ribonuclease Activity

    Full text link

    Cytology and mating systems in the climbing cacti Hylocereus and Selenicereus

    Get PDF
    Chromosome numbers and meiotic behavior are reported for the climbing cacti species Hylocereus undatus, Hylocereus polyrhizus, and Selenicereus megalanthus. The Hylocereus spp. are diploid (2n 5 22), while S. megalanthus is a tetraploid (2n 5 44). Irregular chromosome disjunction at anaphase I in pollen mother cells of S. megalanthus is probably the major cause of its reduced pollen viability and may contribute to low seed set, low number of viable seeds and, consequently, low fruit mass. A pollination study confirmed self-incompatibility in H. polyrhizus and a weakened incompatibility reaction in H. undatus and S. megalanthus. Major crossability barriers do not exist between the Hylocereus spp. investigated. Reciprocal intergeneric crosses were successful between Hylocereus spp. and S. megalanthus, suggesting that an Hylocereus sp. Might be one of the diploid progenitors of the tetraploid S. megalanthus. The implications of the results on cacti nomenclature and systematics are briefly discussed

    Nonadiabatic geometric phase induced by a counterpart of the Stark shift

    Full text link
    We analyse the geometric phase due to the Stark shift in a system composed of a bosonic field, driven by time-dependent linear amplification, interacting dispersively with a two-level (fermionic) system. We show that a geometric phase factor in the joint state of the system, which depends on the fermionic state (resulting form the Stark shift), is introduced by the amplification process. A clear geometrical interpretation of this phenomenon is provided. We also show how to measure this effect in an interferometric experiment and to generate geometric "Schrodinger cat"-like states. Finally, considering the currently available technology, we discuss a feasible scheme to control and measure such geometric phases in the context of cavity quantum electrodynamics

    Dynamical Casimir effect for a massless scalar field between two concentric spherical shells

    Full text link
    In this work we consider the dynamical Casimir effect for a massless scalar field -- under Dirichlet boundary conditions -- between two concentric spherical shells. We obtain a general expression for the average number of particle creation, for an arbitrary law of radial motion of the spherical shells, using two distinct methods: by computing the density operator of the system and by calculating the Bogoliubov coefficients. We apply our general expression to breathing modes: when only one of the shells oscillates and when both shells oscillate in or out of phase. We also analyze the number of particle production and compare it with the results for the case of plane geometry.Comment: Final version. To apear in Physical Review

    Sqeezing generated by a nonlinear master equation and by amplifying-dissipative Hamiltonians

    Get PDF
    In the first part of this contribution we show that the master equation derived from the generalized version of the nonlinear Doebner-Goldin equation leads to the squeezing of one of the quadratures. In the second part we consider two familiar Hamiltonians, the Bateman- Caldirola-Kanai and the optical parametric oscillator; going back to their classical Lagrangian form we introduce a stochastic force and a dissipative factor. From this new Lagrangian we obtain a modified Hamiltonian that treats adequately the simultaneous amplification and dissipation phenomena, presenting squeezing, too

    Development of algorithms and software for forecasting, nowcasting and variability of TEC

    Get PDF
    Total Electron Content (TEC) is an important characteristic of the ionosphere relevant to communications. Unpredictable variability of the ionospheric parameters due to various disturbances limits the efficiencies of communications, radar and navigation systems. Therefore forecasting and nowcasting of TEC are important in the planning and operation of Earth-space and satellite-to-satellite communication systems. Near-Earth space processes are complex being highly nonlinear and time varying with random variations in parameters where mathematical modeling is extremely difficult if not impossible. Therefore data driven models such as Neural Network (NN) based models are considered and found promising in modeling such processes. In this paper the NN based METU-NN model is introduced to forecast TEC values for the intervals ranging from 1 to 24 h in advance. Forecast and nowcast of TEC values are also considered based on TEC database. Day-to-day and hour to-hour variability of TEC are also estimated using statistical methods. Another statistical approach based on the clustering technique is developed and a preprocessing approach is demonstrated for the forecast of ionospheric critical frequency foF2
    corecore