471 research outputs found

    Polymorphisms within immune regulatory pathways predict cetuximab efficacy and survival in metastatic colorectal cancer patients

    Get PDF
    Cetuximab, an IgG1 EGFR-directed antibody, promotes antibody-dependent cell-mediated cytotoxicity. We hypothesized that single-nucleotide polymorphisms (SNPs) in immune regulatory pathways may predict outcomes in patients with metastatic colorectal cancer treated with cetuximab-based regimens. A total of 924 patients were included: 105 received cetuximab in IMCL-0144 and cetuximab/irinotecan in GONO-ASL608LIOM01 (training cohort), 225 FOLFIRI/cetuximab in FIRE-3 (validation cohort 1), 74 oxaliplatin/cetuximab regimens in JACCRO CC-05/06 (validation cohort 2), and 520 FOLFIRI/bevacizumab in FIRE-3 and TRIBE (control cohorts). Twelve SNPs in five genes (IDO1; PD-L1; PD-1; CTLA-4; CD24) were evaluated by PCR-based direct sequencing. We analyzed associations between genotype and clinical outcomes. In the training cohort; patients with the CD24 rs52812045 A/A genotype had a significantly shorter median PFS and OS than those with the G/G genotype (PFS 1.3 vs. 3.6 months; OS 2.3 vs. 7.8 months) in univariate (PFS HR 3.62; p = 0.001; OS HR 3.27; p = 0.0004) and multivariate (PFS HR 3.18; p = 0.009; OS HR 4.93; p = 0.001) analyses. Similarly; any A allele carriers in the JACCRO validation cohort had a significantly shorter PFS than G/G carriers (9.2 vs. 11.8 months; univariate HR 1.90; p = 0.011; multivariate HR 2.12; p = 0.018). These associations were not demonstrated in the control cohorts. CD24 genetic variants may help select patients with metastatic colorectal cancer most likely to benefit from cetuximab-based therapy

    A polymorphism in the cachexia-associated gene INHBA predicts efficacy of regorafenib in patients with refractory metastatic colorectal cancer

    Get PDF
    Activin/myostatin signaling has a critical role not only in cachexia but also in tumor angiogenesis. Cachexia is a frequent complication among patients with advanced cancer and heavily pretreated patients. We aimed to evaluate the prognostic significance of cachexia-associated genetic variants in refractory metastatic colorectal cancer (mCRC) patients treated with regorafenib. Associations between twelve single nucleotide polymorphisms in 8 genes (INHBA, MSTN, ALK4, TGFBR1, ALK7, ACVR2B, SMAD2, FOXO3) and clinical outcome were evaluated in mCRC patients of three cohorts: a discovery cohort of 150 patients receiving regorafenib, a validation cohort of 80 patients receiving regorafenib and a control cohort of 128 receiving TAS-102. In the discovery cohort, patients with any G variant in FOXO3 rs12212067 had a significantly lower response rate (P = 0.031) and overall survival (OS) than those with a T/T in univariate analysis (4.5 vs. 7.6 months, hazard ratio [HR] = 1.63, 95% confidence interval [CI] = 1.09–2.46, P = 0.012). Among female patients, those with any G variant in INHBA rs2237432 had a significantly longer OS than those with an A/A in both univariate (7.6 vs. 4.3 months, HR = 0.57, 95%CI = 0.34–0.95, P = 0.021) and multivariable (HR = 0.53, 95%CI = 0.29–0.94, adjusted P = 0.031) analysis. This association was confirmed in female patients of the validation cohort, though without statistical significance (P = 0.059). Conversely, female patients with any G allele in the control group receiving TAS-102 did not show a longer OS. This was the first study evaluating the associations between polymorphisms in cachexia-associated genes and outcomes in refractory mCRC

    The alpha 7 nicotinic receptor agonist PHA-543613 hydrochloride inhibits <i>Porphyromonas gingivalis</i>-induced expression of interleukin-8 by oral keratinocytes

    Get PDF
    Objective: The alpha 7 nicotinic receptor (α7nAChR) is expressed by oral keratinocytes. α7nAChR activation mediates anti-inflammatory responses. The objective of this study was to determine if α7nAChR activation inhibited pathogen-induced interleukin-8 (IL-8) expression by oral keratinocytes.&lt;p&gt;&lt;/p&gt; Materials and methods: Periodontal tissue expression of α7nAChR was determined by real-time PCR. OKF6/TERT-2 oral keratinocytes were exposed to &lt;i&gt;Porphyromonas gingivalis&lt;/i&gt; in the presence and absence of a α7nAChR agonist (PHA-543613 hydrochloride) alone or after pre-exposure to a specific α7nAChR antagonist (α-bungarotoxin). Interleukin-8 (IL-8) expression was measured by ELISA and real-time PCR. Phosphorylation of the NF-κB p65 subunit was determined using an NF-κB p65 profiler assay and STAT-3 activation by STAT-3 in-cell ELISA. The release of ACh from oral keratinocytes in response to &lt;i&gt;P. gingivalis&lt;/i&gt; lipopolysaccharide was determined using a GeneBLAzer M3 CHO-K1-blacell reporter assay.&lt;p&gt;&lt;/p&gt; Results: Expression of α7nAChR mRNA was elevated in diseased periodontal tissue. PHA-543613 hydrochloride inhibited &lt;i&gt;P. Gingivalis&lt;/i&gt;-induced expression of IL-8 at the transcriptional level. This effect was abolished when cells were pre-exposed to a specific α7nAChR antagonist, α-bungarotoxin. PHA-543613 hydrochloride downregulated NF-κB signalling through reduced phosphorylation of the NF-κB p65-subunit. In addition, PHA-543613 hydrochloride promoted STAT-3 signalling by maintenance of phosphorylation. Furthermore, oral keratinocytes upregulated ACh release in response to &lt;i&gt;P. Gingivalis&lt;/i&gt; lipopolysaccharide.&lt;p&gt;&lt;/p&gt; Conclusion: These data suggest that α7nAChR plays a role in regulating the innate immune responses of oral keratinocytes.&lt;p&gt;&lt;/p&gt

    Bone-derived SDF-1 stimulates IL-6 release via CXCR4, ERK and NF-κB pathways and promotes osteoclastogenesis in human oral cancer cells

    Get PDF
    Oral squamous cell carcinoma (SCC) has a striking tendency to invade to bone. The chemokine stromal cell-derived factor-1 (SDF-1) is constitutively secreted by osteoblasts and plays a key role in homing of hematopoietic cells to the bone marrow. Interleukin (IL)-6 plays an important role in osteoclastogenesis. Herein, we found that SDF-1α increased the secretion of IL-6 in cultured human SCC cells, as shown by reverse transcriptase–polymerase chain reaction and enzyme-linked immunosorbent assay. SDF-1α also increased the surface expression of chemokine receptor 4 (CXCR4) in SCC cells. CXCR4-neutralizing antibody, CXCR4-specific inhibitor (AMD3100) or small interfering RNA against CXCR4 inhibited SDF-1α-induced increase IL-6 production. The transcriptional regulation of IL-6 by SDF-1α was mediated by phosphorylation of extracellular signal-regulated kinases (ERKs) and activation of the nuclear factor-kappa B (NF-κB) components p65 and p50. The binding of p65 and p50 to the NF-κB element on the IL-6 promoter was enhanced by SDF-1α. In addition, IL-6 antibody antagonized the SCC-conditioned medium-increased osteoclastogenesis. These results suggested that SDF-1α from osteoblasts could induce release of IL-6 in human SCC cells via activation of CXCR4, ERK and NF-κB pathway and thereby promote osteoclastogenesis

    A genetic variant in Rassf1a predicts outcome in mCRC patients treated with cetuximab plus chemotherapy : results from FIRE-3 and JACCRO 05 and 06 trials

    Get PDF
    The Hippo pathway is involved in colorectal cancer (CRC) development and progression. The Hippo regulator Rassf1a is also involved in the Ras signaling cascade. In this work, we tested single nucleotide polymorphisms within Hippo components and their association with outcome in CRC patients treated with cetuximab. Two cohorts treated with cetuximab plus chemotherapy were evaluated (198 RAS wild-type (wt) patients treated with first-line FOLFIRI plus Cetuximab within the FIRE-3 trial and 67 Ras wt patients treated either with first-line mFOLFOX6 or SOX plus Cetuximab). In these two populations, Rassf1a rs2236947 was associated with overall survival, as patients with a CC genotype had significantly longer OS compared to those with CA or AA genotypes. This association was stronger in patients with left-side CRC [HR: 1.79 (1.01-3.14); P =0.044 and HR: 2.83 (1.14-7.03); P =0.025, for Fire 3 and JACCRO cohorts, respectively]. Rassf1a rs2236947 is a promising biomarker for patients treated with cetuximab plus chemotherapy

    5-Hydroxytryptamine Modulates Migration, Cytokine and Chemokine Release and T-Cell Priming Capacity of Dendritic Cells In Vitro and In Vivo

    Get PDF
    Beside its well described role in the central and peripheral nervous system 5-hydroxytryptamine (5-HT), commonly known as serotonin, is also a potent immuno-modulator. Serotoninergic receptors (5-HTR) are expressed by a broad range of inflammatory cell types, including dendritic cells (DCs). In this study, we aimed to further characterize the immuno-biological properties of serotoninergic receptors on human monocyte-derived DCs. 5-HT was able to induce oriented migration in immature but not in LPS-matured DCs via activation of 5-HTR1 and 5-HTR2 receptor subtypes. Accordingly, 5-HT also increased migration of pulmonary DCs to draining lymph nodes in vivo. By binding to 5-HTR3, 5-HTR4 and 5-HTR7 receptors, 5-HT up-regulated production of the pro-inflammatory cytokine IL-6. Additionally, 5-HT influenced chemokine release by human monocyte-derived DCs: production of the potent Th1 chemoattractant IP-10/CXCL10 was inhibited in mature DCs, whereas CCL22/MDC secretion was up-regulated in both immature and mature DCs. Furthermore, DCs matured in the presence of 5-HT switched to a high IL-10 and low IL-12p70 secreting phenotype. Consistently, 5-HT favoured the outcome of a Th2 immune response both in vitro and in vivo. In summary, our study shows that 5-HT is a potent regulator of human dendritic cell function, and that targeting serotoninergic receptors might be a promising approach for the treatment of inflammatory disorders

    The expression of CCAAT/enhancer binding protein (C/EBP) in the human ovary in vivo: specific increase in C/EBPβ during epithelial tumour progression

    Get PDF
    The CCAAT/enhancer binding protein (C/EBP) family of transcription factors is involved in metabolism and differentiation of cells, especially in rodent liver cells and adipocytes. Their roles in vivo and in particular during pathophysiological conditions in humans are largely unknown. We have investigated the presence of C/EBPα, -β, -δ and -ζ in normal ovaries and in epithelial ovarian tumours of different stages. Immunohistochemical experiments demonstrated that C/EBPα and C/EBPβ were preferentially expressed in epithelial/tumour cells irrespective of stage or grade of the tumour. C/EBPβ was located in the nuclei of the cells, in contrast to C/EBPα, which was present only in the cytoplasm of these cells. The nuclear localization of C/EBPβ indicates an active role of this transcription factor in tumour cells, whereas the cytoplasmic distribution suggests a more passive function of C/EBPα. C/EBPδ and -ζ demonstrated a more diverse distribution with predominant localization to epithelial cells, but stromal distribution was also noted. The intracellular distribution was confined to both the nucleus and the cytoplasm for C/EBPδ and -ζ. Western blotting demonstrated that C/EBPα, -β, -δ and -ζ were present in a majority of the samples. The amount of C/EBPβ increased markedly with malignancy, i.e. with degree of dedifferentiation, while the other members of the C/EBP family displayed a more constant expression level. These results demonstrate an association between the expression of members of the C/EBP family and the formation of epithelial ovarian tumours, with C/EBPβ as a potential marker for these tumours. As C/EBPβ is known to be expressed during proliferation of cells in vitro, it may participate in the proliferative process of ovarian epithelial tumour cells in vivo and play a central role in tumour progression. © 1999 Cancer Research Campaig

    Cryptococcus neoformans induces IL-8 secretion and CXCL1 expression by human bronchial epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Cryptococcus neoformans </it>(<it>C. neoformans</it>) is a globally distributed fungal pathogen with the potential to cause serious disease, particularly among immune compromised hosts. Exposure to this organism is believed to occur by inhalation and may result in pneumonia and/or disseminated infection of the brain as well as other organs. Little is known about the role of airway epithelial cells in cryptococcal recognition or their ability to induce an inflammatory response.</p> <p>Methods</p> <p>Immortalized BEAS-2B bronchial epithelial cells and primary normal human bronchial epithelium (NHBE) were stimulated <it>in vitro </it>with encapsulated or acapsular <it>C. neoformans </it>cultivated at room temperature or 37°C. Activation of bronchial epithelial cells was characterized by analysis of inflammatory cytokine and chemokine expression, transcription factor activation, fungal-host cell association, and host cell damage.</p> <p>Results</p> <p>Viable <it>C. neoformans </it>is a strong activator of BEAS-2B cells, resulting in the production of the neutrophil chemokine Interleukin (IL)-8 in a time- and dose-dependent manner. IL-8 production was observed only in response to acapsular <it>C. neoformans </it>that was grown at 37°C. <it>C. neoformans </it>was also able to induce the expression of the chemokine CXCL1 and the transcription factor CAAT/enhancer-binding protein beta (CEBP/β) in BEAS-2B cells. NHBE was highly responsive to stimulation with <it>C. neoformans</it>; in addition to transcriptional up regulation of CXCL1, these primary cells exhibited the greatest IL-8 secretion and cell damage in response to stimulation with an acapsular strain of <it>C. neoformans</it>.</p> <p>Conclusion</p> <p>This study demonstrates that human bronchial epithelial cells mediate an acute inflammatory response to <it>C. neoformans </it>and are susceptible to damage by this fungal pathogen. The presence of capsular polysaccharide and <it>in vitro </it>fungal culture conditions modulate the host inflammatory response to <it>C. neoformans</it>. Human bronchial epithelial cells are likely to contribute to the initial stages of pulmonary host defense <it>in vivo</it>.</p
    corecore