131 research outputs found

    Individual variation in seasonal movements and foraging strategies of a land-locked, ice-breeding pinniped

    Get PDF
    Marine mammal satellite telemetry studies can provide important tests of movement and foraging theory. Here we present the first satellite tracking study of Caspian seals (Pusa caspica), an endangered, ice-breeding phocid seal, endemic to the Caspian Sea. The Caspian Sea is one of the most variable habitats inhabited by any pinniped species, and lacks competing large piscivores. Under such conditions foraging theory predicts individual variation in foraging strategy may develop to reduce intra-species competition. We deployed 75 Argos satellite tags 2009-2012 on adult seals of both sexes, and used State Space Modelling to describe movement, and behavioural states. During winter in all years most individuals were mobile within the icepack, making repeated trips into open water outside the ice field, with only brief stationary periods that may be related to breeding activity. During summer 2011, 60% of tagged animals migrated into the mid and southern Caspian, while the remainder spent the ice free season in the north. Summer foraging locations were not restricted by proximity to haul out sites, with animals spending more than 6 months at sea. Maximum dive depths exceeded 200m, and maximum duration was greater than 20 minutes, but 80% of dives were shallower than 15m and shorter than 5 minutes. Hierarchical cluster analysis identified 3 distinct groups of summer dive behaviour, comprising shallow, intermediate and deep divers, which were also spatially exclusive, suggesting potential niche partitioning and individual specialisation on prey or habitat types. The results can contribute to assessment of impacts from anthropogenic activities and to designation of protected areas encompassing critical habitats

    Inter-year variation in pup production of Caspian seals (Pusa caspica) 2005-2012 determined from aerial surveys

    Get PDF
    Assessing species abundance and reproductive output is crucial for evaluations of population dynamics, conservation status and the development of management objectives. The Caspian seal (Pusa caspica) is a key predator in the Caspian Sea ecosystem and is listed as “Endangered” by IUCN. Here we report on fixed-wing aerial strip transect surveys of the breeding population on the Caspian Sea winter ice field carried out in February 2005-2012. Potential detection biases were estimated by applying a Petersen mark-recapture estimator to the counts from double photographic observations. We also tested for effects of weather conditions on count results, and for correlations between pup production and ice conditions and net primary productivity (npp). Fluctuations in pup production estimates were observed among years, ranging from 8,200 pups (95% CI 7,130-9342) in 2010 to 34,000 (95% CI 31,275-36,814) in 2005. Total adults on the ice ranged from 14,500 in 2010 to 66,300 in 2012. We did not detect significant associations between pup production and either ice summary data (ice season length, and ice area) or npp. The observed inter-year variation may be partly due to underlying biological drivers influencing the fecundity of the population, although measurement errors arising from observation bias, plus variation in survey timing and weather conditions may also have contributed. Identifying the potential drivers of Caspian seal population dynamics will require extending both the survey time series and the quality of supporting data. However, inter-year fluctuations should still cause concern that the population may be vulnerable to environmental variability and ecosystem dynamics

    Thermochemical properties of formamide revisited: New experiment and quantum mechanical calculations

    Get PDF
    Formamide is one of the key compounds in organic chemistry. Surprisingly, the experimental thermochemical data for this compound are scarce. In this work, the standard molar enthalpy of formation in the gaseous state of formamide ΔfHm°(g, 298.15 K) = (-188.6 ± 0.4) kJ·mol-1 has been derived from enthalpy of formation ΔfHm°(l, 298.15 K) = (-571.4 ± 0.3) kJ·mol-1 (measured calorimetrically) and the molar enthalpy of vaporization Δ1gHm = (62.2 ± 0.3) kJ·mol-1 obtained from the vapor pressure measurements. To verify the experimental data, first-principles calculations have been performed using density functional theory (DFT), MPn, W1U, CBS-n, and Gn methods. © 2011 American Chemical Society

    Longitudinal trajectories of blood lipid levels in an ageing population sample of Russian Western-Siberian urban population

    Get PDF
    This study investigated 12-year blood lipid trajectories and whether these trajectories are modified by smoking and lipid lowering treatment in older Russians. To do so, we analysed data on 9,218 Russian West-Siberian Caucasians aged 45-69 years at baseline participating in the international HAPIEE cohort study. Mixed-effect multilevel models were used to estimate individual level lipid trajectories across the baseline and two follow-up examinations (16,445 separate measurements over 12 years). In all age groups, we observed a reduction in serum total cholesterol (TC), LDL-C and non-HDL-C over time even after adjusting for sex, statin treatment, hypertension, diabetes, social factors and mortality (P 60 years at baseline). In smokers, TC, LDL-C, non-HDL-C and TG decreased less markedly than in non-smokers, while HDL-C decreased more rapidly while the LDL-C/HDL-C ratio increased. In subjects treated with lipid-lowering drugs, TC, LDL-C and non-HDL-C decreased more markedly and HDL-C less markedly than in untreated subjects while TG and LDL-C/HDL-C remained stable or increased in treatment naïve subjects. We conclude, that in this ageing population we observed marked changes in blood lipids over a 12 year follow up, with decreasing trajectories of TC, LDL-C and non-HDL-C and mixed trajectories of TG. The findings suggest that monitoring of age-related trajectories in blood lipids may improve prediction of CVD risk beyond single measurements

    High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels

    Get PDF
    We report a novel and simple approach for generating near-perfect quality polarization entanglement in a fully guided-wave fashion. Both deterministic pair separation into two adjacent telecommunication channels and the paired photons' temporal walk-off compensation are achieved using standard fiber components. Two-photon interference experiments are performed, both for quantitatively demonstrating the relevance of our approach, and for manipulating the produced state between bosonic and fermionic symmetries. The compactness, versatility, and reliability of this configuration makes it a potential candidate for quantum communication applications.Comment: 6 figure

    Resonance trapping and saturation of decay widths

    Full text link
    Resonance trapping appears in open many-particle quantum systems at high level density when the coupling to the continuum of decay channels reaches a critical strength. Here a reorganization of the system takes place and a separation of different time scales appears. We investigate it under the influence of additional weakly coupled channels as well as by taking into account the real part of the coupling term between system and continuum. We observe a saturation of the mean width of the trapped states. Also the decay rates saturate as a function of the coupling strength. The mechanism of the saturation is studied in detail. In any case, the critical region of reorganization is enlarged. When the transmission coefficients for the different channels are different, the width distribution is broadened as compared to a chi_K^2 distribution where K is the number of channels. Resonance trapping takes place before the broad state overlaps regions beyond the extension of the spectrum of the closed system.Comment: 18 pages, 8 figures, accepted by Phys. Rev.

    High Speed and High Efficiency Travelling Wave Single-Photon Detectors Embedded in Nanophotonic Circuits

    Get PDF
    Ultrafast, high quantum efficiency single photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. High photon detection efficiency is essential for scalable measurement-based quantum computation, quantum key distribution, and loophole-free Bell experiments. However, imperfect modal matching and finite photon absorption rates have usually limited the maximum attainable detection efficiency of single photon detectors. Here we demonstrate a superconducting nanowire detector atop nanophotonic waveguides which allows us to drastically increase the absorption length for incoming photons. When operating the detectors close to the critical current we achieve high on-chip single photon detection efficiency up to 91% at telecom wavelengths, with uncertainty dictated by the variation of the waveguide photon flux. We also observe remarkably low dark count rates without significant compromise of detection efficiency. Furthermore, our detectors are fully embedded in a scalable silicon photonic circuit and provide ultrashort timing jitter of 18ps. Exploiting this high temporal resolution we demonstrate ballistic photon transport in silicon ring resonators. The direct implementation of such a detector with high quantum efficiency, high detection speed and low jitter time on chip overcomes a major barrier in integrated quantum photonics

    Molecular origin of enhanced proton conductivity in anhydrous ionic systems

    Get PDF
    YesIonic systems with enhanced proton conductivity are widely viewed as promising electrolytes in fuel cells and batteries. Nevertheless, a major challenge toward their commercial applications is determination of the factors controlling the fast proton hopping in anhydrous conditions. To address this issue, we have studied novel proton-conducting materials formed via a chemical reaction of lidocaine base with a series of acids characterized by a various number of proton-active sites. From ambient and high pressure experimental data, we have found that there are fundamental differences in the conducting properties of the examined salts. On the other hand, DFT calculations revealed that the internal proton hopping within the cation structure strongly affects the pathways of mobility of the charge carrier. These findings offer a fresh look on the Grotthuss-type mechanism in protic ionic glasses as well as provide new ideas for the design of anhydrous materials with exceptionally high proton conductivity
    corecore