28 research outputs found
Impact of volatile phenols and their precursors on wine quality and control measures of Brettanomyces/Dekkera yeasts
Volatile phenols are aromatic compounds and one of the key molecules responsible for olfactory defects in wine. The yeast genus Brettanomyces is the only major microorganism that has the ability to covert hydroxycinnamic acids into important levels of these compounds, especially 4-ethylphenol and 4-ethylguaiacol, in red wine. When 4-ethylphenols reach concentrations greater than the sensory threshold, all wine’s organoleptic characteristics might be influenced or damaged. The aim of this literature review is to provide a better understanding of the physicochemical, biochemical, and metabolic factors that are related to the levels of p-coumaric acid and volatile phenols in wine. Then, this work summarizes the different methods used for controlling the presence of Brettanomyces in wine and the production of ethylphenols
A new method for the detection of early contamination of red wine by Brettanomyces bruxellensis using Pseudomonas putida 4-ethylphenol methylene hydroxylase (4-EPMH)
Brettanomyces/Dekkera bruxellensis is a cause of major concern for the winemaking industry worldwide. If a slight presence of this spoilage yeast in red wine adds a Brett character, a strong contamination has irreversible and detrimental effects on the organoleptic qualities due to the production of volatile phenols such as 4-ethylphenol. Time is a key factor in the treatment of B. bruxellensis contaminations. Nowadays, the diagnostic and quantification resources available are time consuming and too expensive, making them either inadequate or inaccessible to most of the winemakers. This study was focused on a new, easy to use, inexpensive method that could allow winemakers to directly detect B. bruxellensis contamination in red wine at an early stage, hence, reducing wine spoilage. In this work, the ability of Pseudomonas putida 4-ethylphenol methylene hydroxylase was tested in order to catabolize the 4-ethylphenol and to elaborate an enzymatic assay with the purpose of detecting early contaminations by B. bruxellensis in red wine. We have developed a colorimetric enzymatic assay, based on the redox state of the 4-ethylphenol methylene hydroxylase co-factor, cytochrome C, that can detect and quantify low concentrations of 4-ethylphenol. The range of concentrations detected is well below the level detectable by the human nose. Combined to an enrichment step, this method allows the detection of B. bruxellensis at an initial concentration of less than 10 cells per ml