23 research outputs found

    Multimodal Earth observation data fusion: Graph-based approach in shared latent space

    Get PDF
    Multiple and heterogenous Earth observation (EO) platforms are broadly used for a wide array of applications, and the integration of these diverse modalities facilitates better extraction of information than using them individually. The detection capability of the multispectral unmanned aerial vehicle (UAV) and satellite imagery can be significantly improved by fusing with ground hyperspectral data. However, variability in spatial and spectral resolution can affect the efficiency of such dataset's fusion. In this study, to address the modality bias, the input data was projected to a shared latent space using cross-modal generative approaches or guided unsupervised transformation. The proposed adversarial networks and variational encoder-based strategies used bi-directional transformations to model the cross-domain correlation without using cross-domain correspondence. It may be noted that an interpolation-based convolution was adopted instead of the normal convolution for learning the features of the point spectral data (ground spectra). The proposed generative adversarial network-based approach employed dynamic time wrapping based layers along with a cyclic consistency constraint to use the minimal number of unlabeled samples, having cross-domain correlation, to compute a cross-modal generative latent space. The proposed variational encoder-based transformation also addressed the cross-modal resolution differences and limited availability of cross-domain samples by using a mixture of expert-based strategy, cross-domain constraints, and adversarial learning. In addition, the latent space was modelled to be composed of modality independent and modality dependent spaces, thereby further reducing the requirement of training samples and addressing the cross-modality biases. An unsupervised covariance guided transformation was also proposed to transform the labelled samples without using cross-domain correlation prior. The proposed latent space transformation approaches resolved the requirement of cross-domain samples which has been a critical issue with the fusion of multi-modal Earth observation data. This study also proposed a latent graph generation and graph convolutional approach to predict the labels resolving the domain discrepancy and cross-modality biases. Based on the experiments over different standard benchmark airborne datasets and real-world UAV datasets, the developed approaches outperformed the prominent hyperspectral panchromatic sharpening, image fusion, and domain adaptation approaches. By using specific constraints and regularizations, the network developed was less sensitive to network parameters, unlike in similar implementations. The proposed approach illustrated improved generalizability in comparison with the prominent existing approaches. In addition to the fusion-based classification of the multispectral and hyperspectral datasets, the proposed approach was extended to the classification of hyperspectral airborne datasets where the latent graph generation and convolution were employed to resolve the domain bias with a small number of training samples. Overall, the developed transformations and architectures will be useful for the semantic interpretation and analysis of multimodal data and are applicable to signal processing, manifold learning, video analysis, data mining, and time series analysis, to name a few.This research was partly supported by the Hebrew University of Jerusalem Intramural Research Found Career Development, Association of Field Crop Farmers in Israel and the Chief Scientist of the Israeli Ministry of Agriculture and Rural Development (projects 20-02-0087 and 12-01-0041)

    Wind Channeling by the Dead-Sea Wadis

    No full text

    Near-optimal Path-based Wormhole Broadcast in Hypercubes

    No full text
    We consider the problem of broadcasting a message in the n-cube, Qn, equipped with wormhole switching. The communication model assumed is one-port, and the broadcasting scheme is path-based whereby, during broadcasting along a path by a node, all the nodes on that path will receive the message. The wormhole path length is m where 1 <m n,and thus this is a generalization of an earlier work which considered a path length of n. First, a method is proposed which is based on recursively partitioning the cube to subcubes of dimension m, and then calling the previously developed algorithm on such Qm's concurrently (cubebased broadcast). The second method is based on the concept of Gray codes (GCs), and at every given step, it forms the Hamiltonian path of appropriate size as the broadcast path (GC-based broadcast). It is shown that the steps required in GC-based broadcast is fewer than or equal to those needed by cube-based broadcast. Furthermore, comparison of time complexity of GC-based broadcast to the lower bound reveals that this algorithm is near-optimal, and in fact optimal in many cases. This work improves on the best algorithm developed for path-based broadcast in one-port hypercube both in complexity and in simplicity.

    Impact of cigarette smoke on physical‐chemical and molecular proprieties of human skin in an ex vivo model

    No full text
    International audienceThis is a study about the skin aging exposome, focusing on the effect of cigarette smoke.Human living skin explants (HSE) were exposed to cigarette smoke (CS) of two cigarettes for 2 hours using a custom-made exposure chamber, the Pollubox®. Effects on the surface physico-chemistry and molecular properties of the skin were analyzed and reported for the first time. To this end, transcriptomic study followed by immunohistochemistry, malondialdehyde dosage (MDA) and surface physio-chemistry data (surface free energy determination, TEWL, skin pH and FTIR spectroscopy of the explant) were collected from non-treated and treated HSE.Results showed a decrease of the total surface free energy of the treated HSE. This decrease reflected higher interactions with polar compounds from the environment and consequently a decrease of the surface hydrophobicity. Additionally, an increase of TEWL and skin pH was observed after treatment. The transcriptomic analysis showed downregulation of mitochondrial genes (PON2-NDUFA4L2-ATP1A1-ALDH2-PRODH) combined with an increase of MDA in CS-treated HSE. CS-induced oxidation of lipids at HSE surface alters the skin barrier: interactions with polar products are enhanced and the lipid chain packing at the surface is modified. Consequently, skin permeability could increase which correlated with repression of CA9 and AQP1 genes. Beside activation of AHR-NRF2 pathway in CS-exposed HSE, our results suggested that mitochondrial functions were strongly impacted and oxidized lipids failed to be eliminated promoting skin barrier alteration. A mitophagy activity was suggested through the confirmation of PINK1 accumulation in the epidermis by immunostaining

    A blockade of complement activation prevents rapid intestinal ischaemia-reperfusion injury by modulating mucosal mast cell degranulation in rats

    No full text
    We attempted to define the putative role of complement activation in association with mucosal mast cell (MMC) degranulation in the pathogenesis of rapid intestinal ischaemia-reperfusion (I/R) injury. We prepared complement activity-depleted rats by the administration of the anti-complement agent K-76COOH and the serine-protease inhibitor FUT-175. Autoperfused segments of the jejunum were exposed to 60 min of ischaemia, followed by reperfusion for various time periods, and the epithelial permeability was assessed by the 51Cr-EDTA clearance rate. The number of MMC was immunohistochemically assessed. In control rats, the maximal increase in mucosal permeability was achieved by 30–45 min of reperfusion. This increase was significantly attenuated by the administration of either K-76COONa alone or in combination with FUT-175. In contrast, the administration of carboxypeptidase inhibitor (CPI), which prevents the inactivation of complement-derived anaphylatoxins such as C5a, significantly enhanced the increase in I/R-induced mucosal permeability. These findings were confirmed morphologically by light microscopy and scanning electron microscopy. In addition, the I/R-induced mucosal injury was accompanied by a marked decrease in the number of MMC, and administration of K-76COOH significantly inhibited this change. These results indicate that complement activation and the generation of complement-derived anaphylatoxins are key events in I/R-induced mucosal injury. It is likely that intestinal I/R-induced mucosal injury may be partially mediated by MMC activation associated with the complement activation
    corecore