50 research outputs found

    Shape Matching and Object Recognition

    Get PDF
    We approach recognition in the framework of deformable shape matching, relying on a new algorithm for finding correspondences between feature points. This algorithm sets up correspondence as an integer quadratic programming problem, where the cost function has terms based on similarity of corresponding geometric blur point descriptors as well as the geometric distortion between pairs of corresponding feature points. The algorithm handles outliers, and thus enables matching of exemplars to query images in the presence of occlusion and clutter. Given the correspondences, we estimate an aligning transform, typically a regularized thin plate spline, resulting in a dense correspondence between the two shapes. Object recognition is handled in a nearest neighbor framework where the distance between exemplar and query is the matching cost between corresponding points. We show results on two datasets. One is the Caltech 101 dataset (Li, Fergus and Perona), a challenging dataset with large intraclass variation. Our approach yields a 45 % correct classification rate in addition to localization. We also show results for localizing frontal and profile faces that are comparable to special purpose approaches tuned to faces

    Efficient Recognition of Partially Visible Objects Using a Logarithmic Complexity Matching Technique

    Full text link
    An important task in computer vision is the recognition of partially visible two-dimensional objects in a gray scale image. Recent works addressing this problem have attempted to match spatially local features from the image to features generated by models of the objects. However, many algo rithms are considerably less efficient than they might be, typ ically being O(IN) or worse, where I is the number offeatures in the image and N is the number of features in the model set. This is invariably due to the feature-matching portion of the algorithm. In this paper we discuss an algorithm that significantly improves the efficiency offeature matching. In addition, we show experimentally that our recognition algo rithm is accurate and robust. Our algorithm uses the local shape of contour segments near critical points, represented in slope angle-arclength space (θ-s space), as fundamental fea ture vectors. These feature vectors are further processed by projecting them onto a subspace in θ-s space that is obtained by applying the Karhunen-Loève expansion to all such fea tures in the set of models, yielding the final feature vectors. This allows the data needed to store the features to be re duced, while retaining nearly all information important for recognition. The heart of the algorithm is a technique for performing matching between the observed image features and the precomputed model features, which reduces the runtime complexity from O(IN) to O(I log I + I log N), where I and N are as above. The matching is performed using a tree data structure, called a kD tree, which enables multidi mensional searches to be performed in O(log) time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66975/2/10.1177_027836498900800608.pd

    From Images to Shape Models for Object Detection

    Get PDF
    This research was supported by the EADS foundation, INRIA, CNRS, and SNSF. V. Ferrari was funded by a fellowship of the EADS foundation and by SNSF.International audienceWe present an object class detection approach which fully integrates the complementary strengths offered by shape matchers. Like an object detector, it can learn class models directly from images, and can localize novel instances in the presence of intra-class variations, clutter, and scale changes. Like a shape matcher, it finds the boundaries of objects, rather than just their bounding-boxes. This is achieved by a novel technique for learning a shape model of an object class given images of example instances. Furthermore, we also integrate Hough-style voting with a non-rigid point matching algorithm to localize the model in cluttered images. As demonstrated by an extensive evaluation, our method can localize object boundaries accurately and does not need segmented examples for training (only bounding-boxes)

    Real-time parallel hashing on the gpu

    Get PDF
    Figure 1: Overview of our construction for a voxelized Lucy model, colored by mapping x, y, and z coordinates to red, green, and blue respectively (far left). The 3.5 million voxels (left) are input as 32-bit keys and placed into buckets of ≤ 512 items, averaging 409 each (center). Each bucket then builds a cuckoo hash with three sub-tables and stores them in a larger structure with 5 million entries (right). Close-ups follow the progress of a single bucket, showing the keys allocated to it (center; the bucket is linear and wraps around left to right) and each of its completed cuckoo sub-tables (right). Finding any key requires checking only three possible locations. We demonstrate an efficient data-parallel algorithm for building large hash tables of millions of elements in real-time. We consider two parallel algorithms for the construction: a classical sparse perfect hashing approach, and cuckoo hashing, which packs elements densely by allowing an element to be stored in one of multiple possible locations. Our construction is a hybrid approach that uses both algorithms. We measure the construction time, access time, and memory usage of our implementations and demonstrate real-time performance on large datasets: for 5 million key-value pairs, we construct a hash table in 35.7 ms using 1.42 times as much memory as the input data itself, and we can access all the elements in that hash table in 15.3 ms. For comparison, sorting the same data requires 36.6 ms, but accessing all the elements via binary search requires 79.5 ms. Furthermore, we show how our hashing methods can be applied to two graphics applications: 3D surface intersection for moving data and geometric hashing for image matching

    Case-Based Object Recognition

    No full text

    Depth computations from polyhedral images

    No full text
    corecore