1,763 research outputs found

    Spin Dynamics in the Second Subband of a Quasi Two Dimensional System Studied in a Single Barrier Heterostructure by Time Resolved Kerr Rotation

    Full text link
    By biasing a single barrier heterostructure with a 500nm-thick GaAs layer as the absorption layer, the spin dynamics for both of the first and second subband near the AlAs barrier are examined. We find that when simultaneously scanning the photon energy of both the probe and pump beams, a sign reversal of the Kerr rotation (KR) takes place as long as the probe photons break away the first subband and probe the second subband. This novel feature, while stemming from the exchange interaction, has been used to unambiguously distinguish the different spin dynamics (T21∗T_2^{1*} and T22∗T_2^{2*}) for the first and second subbands under the different conditions by their KR signs (negative for 1st1^{st} and positive for 2nd2^{nd}). In the zero magnetic field, by scanning the wavelength towards the short wavelength, T21∗T_2^{1*} decreases in accordance with the D'yakonov-Perel' (DP) spin decoherence mechanism. At 803nm, T22∗T_2^{2*}(450ps) becomes ten times longer than T21∗T_2^{1*}(50ps). However, the value of T22∗T_2^{2*} at 803nm is roughly the same as the value of T21∗T_2^{1*} at 815nm. A new feature has been disclosed at the wavelength of 811nm under the bias of -0.3V (807nm under the bias of -0.6V) that the spin coherence times (T21∗T_2^{1*} and T22∗T_2^{2*}) and the effective g∗g^* factors (∣g∗(E1)∣|g^*(E1)| and ∣g∗(E2)∣|g^*(E2)|) all display a sudden change, due to the "resonant" spin exchange coupling between two spin opposite bands.Comment: 9pages, 3 figure

    Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms

    Full text link
    Laser cooling on weak transitions is a useful technique for reaching ultracold temperatures in atoms with multiple valence electrons. However, for strongly magnetic atoms a conventional narrow-line magneto-optical trap (MOT) is destabilized by competition between optical and magnetic forces. We overcome this difficulty in Er by developing an unusual narrow-line MOT that balances optical and magnetic forces using laser light tuned to the blue side of a narrow (8 kHz) transition. The trap population is spin-polarized with temperatures reaching below 2 microkelvin. Our results constitute an alternative method for laser cooling on weak transitions, applicable to rare-earth-metal and metastable alkaline earth elements.Comment: To appear in Phys. Rev. Lett. 4 pages, 5 figure

    Synthesis and structures of polyiodide radical cation salts of donors combining tetrathiafulvalene with multiple thiophene or oligo-thiophene substituents

    Get PDF
    A series of TTF and EDT-TTF derived donors bearing thiophene, bithiophene and terthiophene side chains is described, from which a group of six radical cation salts with polyiodide ions were formed and structurally characterised. Typically, they contain complex networks of pentaiodide or triiodide anions or both, in some cases including further iodine, with networks of eight, ten, twelve or sixteen iodine atoms. Donor monocations form face-to-face pairs, but tetrakis-substituted donors are slipped along their main axis so the donor side chains can wrap around each other

    Chiral molecular conductor with an insulator-metal transition close to room temperature

    Get PDF
    Materials exhibiting both chirality and conductivity do not exist in nature and very few examples have been synthesised. We report here the synthesis of a chiral molecular metal which remains metallic down to at least 4.2K. This material also exhibits room-temperature switching capabilities with a transition upon cooling below 10°C

    Enantiopure and racemic radical-cation salts of B(malate)2−anions with BEDT-TTF

    Get PDF
    We have synthesized the first examples of radical-cation salts of BEDT-TTF with chiral borate anions, [B(malate)2]−, prepared from either enantiopure or racemic bidentate malate ligands. In the former case only one of two diastereoisomers of the borate anion is incorporated, while for the hydrated racemic salt one racemic pair of borate anions containing a R and a S malate ligand is incorporated. Their conducting and magnetic properties are reported. The tight-binding band calculation indicates that the chiral salt has an effective half-filled flat band, which is likely to be caused by the chiral structural feature

    Does matter wave amplification work for fermions?

    Full text link
    We discuss the relationship between bosonic stimulation, density fluctuations, and matter wave gratings. It is shown that enhanced stimulated scattering, matter wave amplification and atomic four-wave mixing are in principle possible for fermionic or non-degenerate samples if they are prepared in a cooperative state. In practice, there are limitations by short coherence times.Comment: 5 pages, 1 figure

    Interference of Bose-Einstein condensates in momentum space

    Full text link
    We suggest an experiment to investigate the linear superposition of two spatially separated Bose-Einstein condensates. Due to the coherent combination of the two wave functions, the dynamic structure factor, measurable through inelastic photon scattering at high momentum transfer qq, is predicted to exhibit interference fringes with frequency period Δν=q/md\Delta\nu = q/md where dd is the distance between the condensates. We show that the coherent configuration corresponds to an eigenstate of the physical observable measured in the experiment and that the relative phase of the condensates is hence created through the measurement process.Comment: 4 pages and 2 eps figure

    Doppler cooling and trapping on forbidden transitions

    Get PDF
    Ultracold atoms at temperatures close to the recoil limit have been achieved by extending Doppler cooling to forbidden transitions. A cloud of ^40Ca atoms has been cooled and trapped to a temperature as low as 6 \mu K by operating a magneto-optical trap on the spin-forbidden intercombination transition. Quenching the long-lived excited state with an additional laser enhanced the scattering rate by a factor of 15, while a high selectivity in velocity was preserved. With this method more than 10% of pre-cooled atoms from a standard magneto-optical trap have been transferred to the ultracold trap. Monte-Carlo simulations of the cooling process are in good agreement with the experiments

    Rapid Evaluation in Whole Blood Culture of Regimens for XDR-TB Containing PNU-100480 (Sutezolid), TMC207, PA-824, SQ109, and Pyrazinamide

    Get PDF
    There presently is no rapid method to assess the bactericidal activity of new regimens for tuberculosis. This study examined PNU-100480, TMC207, PA-824, SQ109, and pyrazinamide, singly and in various combinations, against intracellular M. tuberculosis, using whole blood culture (WBA). The addition of 1,25-dihydroxy vitamin D facilitated detection of the activity of TMC207 in the 3-day cultures. Pyrazinamide failed to show significant activity against a PZA-resistant strain (M. bovis BCG), and was not further considered. Low, mid, and high therapeutic concentrations of each remaining drug were tested individually and in a paired checkerboard fashion. Observed bactericidal activity was compared to that predicted by the sum of the effects of individual drugs. Combinations of PNU-100480, TMC207, and SQ109 were fully additive, whereas those including PA-824 were less than additive or antagonistic. The cumulative activities of 2, 3, and 4 drug combinations were predicted based on the observed concentration-activity relationship, published pharmacokinetic data, and, for PNU-100480, published WBA data after oral dosing. The most active regimens, including PNU-100480, TMC207, and SQ109, were predicted to have cumulative activity comparable to standard TB therapy. Further testing of regimens including these compounds is warranted. Measurement of whole blood bactericidal activity can accelerate the development of novel TB regimens

    Theory of four-wave mixing of matter waves from a Bose-Einstein condensate

    Full text link
    A recent experiment [Deng et al., Nature 398, 218(1999)] demonstrated four-wave mixing of matter wavepackets created from a Bose-Einstein condensate. The experiment utilized light pulses to create two high-momentum wavepackets via Bragg diffraction from a stationary Bose-Einstein condensate. The high-momentum components and the initial low momentum condensate interact to form a new momentum component due to the nonlinear self-interaction of the bosonic atoms. We develop a three-dimensional quantum mechanical description, based on the slowly-varying-envelope approximation, for four-wave mixing in Bose-Einstein condensates using the time-dependent Gross-Pitaevskii equation. We apply this description to describe the experimental observations and to make predictions. We examine the role of phase-modulation, momentum and energy conservation (i.e., phase-matching), and particle number conservation in four-wave mixing of matter waves, and develop simple models for understanding our numerical results.Comment: 18 pages Revtex preprint form, 13 eps figure
    • …
    corecore