22,165 research outputs found

    CUACE/Dust ─ an integrated system of observation and modeling systems for operational dust forecasting in Asia

    Get PDF
    An integrated sand and dust storm (SDS) forecasting system &ndash; CUACE/Dust (Chinese Unified Atmospheric Chemistry Environment for Dust) has been developed, which consists of a comprehensive dust aerosol module with emission, dry/wet depositions and other atmospheric dynamic processes, and a data assimilation system (DAS) using observational data from the CMA (China Meteorological Administration) ground dust monitoring network and retrieved dust information from a Chinese geostationary satellite &ndash; FY-2C. This is the first time that a combination of surface network observations and satellite retrievals of the dust aerosol has been successfully used in the real time operational forecasts in East Asia through a DAS. During its application for the operational SDS forecasts in East Asia for spring 2006, this system captured the major 31 SDS episodes observed by both surface and satellite observations. Analysis shows that the seasonal mean threat score (TS) for 0&ndash;24 h forecast over the East Asia in spring 2006 increased from 0.22 to 0.31 by using the DAS, a 41% enhancement. The time series of the forecasted dust concentrations for a number of representative stations for the whole spring 2006 were also evaluated against the surface PM<sub>10</sub> monitoring data, showing a very good agreement in terms of the SDS timing and magnitudes near source regions where dust aerosols dominate. This is a summary paper for a special issue of ACP featuring the development and results of the forecasting system

    Multidisciplinary approaches in evolutionary linguistics

    Get PDF
    Studying language evolution has become resurgent in modern scientific research. In this revival field, approaches from a number of disciplines other than linguistics, including (paleo)anthropology and archaeology, animal behaviors, genetics, neuroscience, computer simulation, and psychological experimentation, have been adopted, and a wide scope of topics have been examined in one way or another, covering not only world languages, but also human behaviors, brains and cultural products, as well as nonhuman primates and other species remote to humans. In this paper, together with a survey of recent findings based on these many approaches, we evaluate how this multidisciplinary perspective yields important insights into a comprehensive understanding of language, its evolution, and human cognition.postprin

    Improved cosmological constraints on the curvature and equation of state of dark energy

    Full text link
    We apply the Constitution compilation of 397 supernova Ia, the baryon acoustic oscillation measurements including the AA parameter, the distance ratio and the radial data, the five-year Wilkinson microwave anisotropy probe and the Hubble parameter data to study the geometry of the universe and the property of dark energy by using the popular Chevallier-Polarski-Linder and Jassal-Bagla-Padmanabhan parameterizations. We compare the simple χ2\chi^2 method of joined contour estimation and the Monte Carlo Markov chain method, and find that it is necessary to make the marginalized analysis on the error estimation. The probabilities of Ωk\Omega_k and waw_a in the Chevallier-Polarski-Linder model are skew distributions, and the marginalized 1σ1\sigma errors are Ωm=0.279−0.008+0.015\Omega_m=0.279^{+0.015}_{-0.008}, Ωk=0.005−0.011+0.006\Omega_k=0.005^{+0.006}_{-0.011}, w0=−1.05−0.06+0.23w_0=-1.05^{+0.23}_{-0.06}, and wa=0.5−1.5+0.3w_a=0.5^{+0.3}_{-1.5}. For the Jassal-Bagla-Padmanabhan model, the marginalized 1σ1\sigma errors are Ωm=0.281−0.01+0.015\Omega_m=0.281^{+0.015}_{-0.01}, Ωk=0.000−0.006+0.007\Omega_k=0.000^{+0.007}_{-0.006}, w0=−0.96−0.18+0.25w_0=-0.96^{+0.25}_{-0.18}, and wa=−0.6−1.6+1.9w_a=-0.6^{+1.9}_{-1.6}. The equation of state parameter w(z)w(z) of dark energy is negative in the redshift range 0≤z≤20\le z\le 2 at more than 3σ3\sigma level. The flat Λ\LambdaCDM model is consistent with the current observational data at the 1σ1\sigma level.Comment: 10 figures, 12 pages, Classical and Quantum Gravity in press; v2 to match the pulished versio

    Studies on bioactive peptide from Chinese soft-shelled turtle (Pelodiscus sinensis) with functionalities of ACE inhibition and antioxidation

    Get PDF
    This paper dealt with a novel anti-hypertensive collagen peptide from Chinese soft-shelled turtle (Pelodiscus sinensis), which was an efficient inhibitor of angiotensin converting enzyme (ACE, EC 3.4.15.1). ACE plays an important physiological role in the regulation of blood pressure by virtue of the rennin angiotensin system. In traditional Chinese medicine, Chinese soft-shelled turtle possesses many health-function properties. This study investigated the effects of Chinese soft-shelled turtle hydrolysate (CTH) on ACE inhibition. The CTH showed limited inhibition effect on ACE with an IC50 value at 280 ± 8 μg/ml, while its graded fraction of molecular weight less than 5000 Da (CTH5K) obtained through membrane ultra filtration exhibited better inhibitory activity (IC50 = 190 ± 5 μg/ml). The antioxidant activity of CTH was also determined by radical scavenging ability. The CTH5K showed higher antioxidant activity. These results indicate that CTH5K possesses potent antihypertensive and antioxidant activity, and provides a bioactive peptide material with potential applications as ingredients in functional foods.Key words: Chinese soft-shelled turtle, collagen peptide, angiotensin converting enzyme inhibitor, antihypertensive, antioxidant

    Dietary Deoxynivalenol Exposure Assessment in University Students from Japan

    Get PDF
    This study was conducted to give a preliminary estimation of deoxynivalenol (DON) dietary exposure in Japanese university students (n = 30, aged 22–25 years) using a biomarker approach and to examine the correlation between wheat food intake and DON exposure levels. Spot urine samples were collected from 30 students of Azabu University, Tokyo. Urine samples were treated with enzyme digestion (for total DON measurement) and without (for unconjugated DON analysis) before clean-up using an immuno-affinity column and analysis using an LC-MS method, with a 13C15- DON internal standard used for accurate quantification. The limit of detection for this method is 0.5 ng/mL urine. The geometric mean (95% CI) of DON concentration was 2.03 (1.64 – 6.87) ng per mL urine. Ninety of the urine samples had detectable levels of urinary DON. The DON dietary intake exposure estimation suggested that one out of the 30 subjects had an intake of DON that exceeded Joint FAO/WHO Expert Committee on Food Additives (JECFA) provisional maximum tolerable daily intake (PMTDI) level. Mean ratio of free DON to total DON was determined to be 19%. Wheat intake assessed using a basic food frequent questionnaire method did not show a significant correlation with the urinary DON level

    Robust Quantum State Transfer in Random Unpolarized Spin Chains

    Get PDF
    We propose and analyze a new approach for quantum state transfer between remote spin qubits. Specifically, we demonstrate that coherent quantum coupling between remote qubits can be achieved via certain classes of random, unpolarized (infinite temperature) spin chains. Our method is robust to coupling strength disorder and does not require manipulation or control over individual spins. In principle, it can be used to attain perfect state transfer over arbitrarily long range via purely Hamiltonian evolution and may be particularly applicable in a solid-state quantum information processor. As an example, we demonstrate that it can be used to attain strong coherent coupling between Nitrogen-Vacancy centers separated by micrometer distances at room temperature. Realistic imperfections and decoherence effects are analyzed.Comment: 4 pages, 2 figures. V2: Modified discussion of disorder, added references - final version as published in Phys. Rev. Let

    Finding Multiple Roots of Nonlinear Equation Systems via a Repulsion-Based Adaptive Differential Evolution

    Get PDF
    Finding multiple roots of nonlinear equation systems (NESs) in a single run is one of the most important challenges in numerical computation. We tackle this challenging task by combining the strengths of the repulsion technique, diversity preservation mechanism, and adaptive parameter control. First, the repulsion technique motivates the population to find new roots by repulsing the regions surrounding the previously found roots. However, to find as many roots as possible, algorithm designers need to address a key issue: how to maintain the diversity of the population. To this end, the diversity preservation mechanism is integrated into our approach, which consists of the neighborhood mutation and the crowding selection. In addition, we further improve the performance by incorporating the adaptive parameter control. The purpose is to enhance the search ability and remedy the trial-and-error tuning of the parameters of differential evolution (DE) for different problems. By assembling the above three aspects together, we propose a repulsion-based adaptive DE, called RADE, for finding multiple roots of NESs in a single run. To evaluate the performance of RADE, 30 NESs with diverse features are chosen from the literature as the test suite. Experimental results reveal that RADE is able to find multiple roots simultaneously in a single run on all the test problems. Moreover, RADE is capable of providing better results than the compared methods in terms of both root rate and success rate

    Audeosynth: music-driven video montage

    Get PDF
    We introduce music-driven video montage, a media format that offers a pleasant way to browse or summarize video clips collected from various occasions, including gatherings and adventures. In music-driven video montage, the music drives the composition of the video content. According to musical movement and beats, video clips are organized to form a montage that visually reflects the experiential properties of the music. Nonetheless, it takes enormous manual work and artistic expertise to create it. In this paper, we develop a framework for automatically generating music-driven video montages. The input is a set of video clips and a piece of background music. By analyzing the music and video content, our system extracts carefully designed temporal features from the input, and casts the synthesis problem as an optimization and solves the parameters through Markov Chain Monte Carlo sampling. The output is a video montage whose visual activities are cut and synchronized with the rhythm of the music, rendering a symphony of audio-visual resonance.postprin
    • …
    corecore