7,523 research outputs found
An in Situ Technique for Elemental Analysis of Lunar Surfaces
An in situ analytical technique that can remotely determine the elemental constituents of solids has been demonstrated. Laser-Induced Breakdown Spectroscopy (LIBS) is a form of atomic emission spectroscopy in which a powerful laser pulse is focused on a solid to generate a laser spark, or microplasma. Material in the plasma is vaporized, and the resulting atoms are excited to emit light. The light is spectrally resolved to identify the emitting species. LIBS is a simple technique that can be automated for inclusion aboard a remotely operated vehicle. Since only optical access to a sample is required, areas inaccessible to a rover can be analyzed remotely. A single laser spark both vaporizes and excites the sample so that near real-time analysis (a few minutes) is possible. This technique provides simultaneous multielement detection and has good sensitivity for many elements. LIBS also eliminates the need for sample retrieval and preparation preventing possible sample contamination. These qualities make the LIBS technique uniquely suited for use in the lunar environment
What are the most effective treatments for bacterial vaginosis in nonpregnant women?
Either oral or vaginal metronidazole or vaginal clindamycin provides equivalent treatment for bacterial vaginosis in nonpregnant women. Oral clindamycin 300 mg twice daily for 7 days is an effective alternative. There is conflicting evidence regarding the efficacy of a single 2-g dose of oral metronidazole. Ofloxacin 200 mg or 300 mg twice daily is less effective but could be considered for women with intolerance to metronidazole or clindamycin. Overall recurrence rates of up to 30% have been reported. (Grade of recommendation: A, based on systematic reviews and randomized controlled trials
Majorana Fermions and Non-Abelian Statistics in Three Dimensions
We show that three dimensional superconductors, described within a Bogoliubov
de Gennes framework can have zero energy bound states associated with pointlike
topological defects. The Majorana fermions associated with these modes have
non-Abelian exchange statistics, despite the fact that the braid group is
trivial in three dimensions. This can occur because the defects are associated
with an orientation that can undergo topologically nontrivial rotations. A new
feature of three dimensional systems is that there are "braidless" operations
in which it is possible to manipulate the groundstate associated with a set of
defects without moving or measuring them. To illustrate these effects we
analyze specific architectures involving topological insulators and
superconductors.Comment: 4 pages, 2 figures, published versio
Climate Modeling of a Potential ExoVenus
The planetary mass and radius sensitivity of exoplanet discovery capabilities
has reached into the terrestrial regime. The focus of such investigations is to
search within the Habitable Zone where a modern Earth-like atmosphere may be a
viable comparison. However, the detection bias of the transit and radial
velocity methods lies close to the host star where the received flux at the
planet may push the atmosphere into a runaway greenhouse state. One such
exoplanet discovery, Kepler-1649b, receives a similar flux from its star as
modern Venus does from the Sun, and so was categorized as a possible exoVenus.
Here we discuss the planetary parameters of Kepler-1649b with relation to Venus
to establish its potential as a Venus analog. We utilize the general
circulation model ROCKE-3D to simulate the evolution of the surface temperature
of Kepler-1649b under various assumptions, including relative atmospheric
abundances. We show that in all our simulations the atmospheric model rapidly
diverges from temperate surface conditions towards a runaway greenhouse with
rapidly escalating surface temperatures. We calculate transmission spectra for
the evolved atmosphere and discuss these spectra within the context of the
James Webb Space Telescope (JWST) Near-Infrared Spectrograph (NIRSpec)
capabilities. We thus demonstrate the detectability of the key atmospheric
signatures of possible runaway greenhouse transition states and outline the
future prospects of characterizing potential Venus analogs.Comment: 11 pages, 4 figures, 1 table, accepted for publication in the
Astrophysical Journal. The data from this paper are open source and are
available from the following data portals:
https://portal.nccs.nasa.gov/GISS_modelE/ROCKE-3D/Climate_Modeling_of_a_Potential_ExoVenus
https://archive.org/details/Climate_Modeling_of_a_Potential_ExoVenu
Quantized Thermal Transport in the Fractional Quantum Hall Effect
We analyze thermal transport in the fractional quantum Hall effect (FQHE),
employing a Luttinger liquid model of edge states. Impurity mediated
inter-channel scattering events are incorporated in a hydrodynamic description
of heat and charge transport. The thermal Hall conductance, , is shown to
provide a new and universal characterization of the FQHE state, and reveals
non-trivial information about the edge structure. The Lorenz ratio between
thermal and electrical Hall conductances {\it violates} the free-electron
Wiedemann-Franz law, and for some fractional states is predicted to be {\it
negative}. We argue that thermal transport may provide a unique way to detect
the presence of the elusive upstream propagating modes, predicted for fractions
such as and .Comment: 6 pages REVTeX, 2 postscript figures (uuencoded and compressed
Surface States of the Topological Insulator Bi_{1-x}Sb_x
We study the electronic surface states of the semiconducting alloy BiSb.
Using a phenomenological tight binding model we show that the Fermi surface of
the 111 surface states encloses an odd number of time reversal invariant
momenta (TRIM) in the surface Brillouin zone confirming that the alloy is a
strong topological insulator. We then develop general arguments which show that
spatial symmetries lead to additional topological structure, and further
constrain the surface band structure. Inversion symmetric crystals have 8 Z_2
"parity invariants", which include the 4 Z_2 invariants due to time reversal.
The extra invariants determine the "surface fermion parity", which specifies
which surface TRIM are enclosed by an odd number of electron or hole pockets.
We provide a simple proof of this result, which provides a direct link between
the surface states and the bulk parity eigenvalues. We then make specific
predictions for the surface state structure for several faces of BiSb. We next
show that mirror invariant band structures are characterized by an integer
"mirror Chern number", n_M. The sign of n_M in the topological insulator phase
of BiSb is related to a previously unexplored Z_2 parameter in the L point k.p
theory of pure Bi, which we refer to as the "mirror chirality", \eta. The value
of \eta predicted by the tight binding model for Bi disagrees with the value
predicted by a more fundamental pseudopotential calculation. This explains a
subtle disagreement between our tight binding surface state calculation and
previous first principles calculations on Bi. This suggests that the tight
binding parameters in the Liu Allen model of Bi need to be reconsidered.
Implications for existing and future ARPES experiments and spin polarized ARPES
experiments will be discussed.Comment: 15 pages, 7 figure
Climate Modeling of a Potential Exovenus
The planetary mass and radius sensitivity of exoplanet discovery capabilities has reached into the terrestrial regime. The focus of such investigations is to search within the Habitable Zone where a modern Earth-like atmosphere may be a viable comparison. However, the detection bias of the transit and radial velocity methods lies close to the host star where the received flux at the planet may push the atmosphere into a runaway greenhouse state. One such exoplanet discovery, Kepler-1649b, receives a similar flux from its star as modern Venus does from the Sun, and so was categorized as a possible exoVenus. Here we discuss the planetary parameters of Kepler-1649b in relation to Venus to establish its potential as a Venus analog. We utilize the general circulation model ROCKE-3D to simulate the evolution of the surface temperature of Kepler-1649b under various assumptions, including relative atmospheric abundances. We show that in all our simulations the atmospheric model rapidly diverges from temperate surface conditions toward a runaway greenhouse with rapidly escalating surface temperatures. We calculate transmission spectra for the evolved atmosphere and discuss these spectra within the context of the James Webb Space Telescope Near-Infrared Spectrograph capabilities. We thus demonstrate the detectability of the key atmospheric signatures of possible runaway greenhouse transition states and outline the future prospects of characterizing potential Venus analogs
Comment on ``Enhancement of the Tunneling Density of States in Tomonaga-Luttinger Liquids''
In a recent Physical Review Letter, Oreg and Finkel'stein (OF) have
calculated the electron density of states (DOS) for tunneling into a repulsive
Luttinger liquid close to the location of an impurity. The result of their
calculation is a DOS which is enhanced with respect to the pure system, and
moreover diverging for not too strong repulsion. In this Comment we intend to
show that OF's calculation suffers from a subtle flaw which, being corrected,
results into a DOS not only vanishing at zero frequency but in fact suppressed
in comparison with the DOS of a pure Luttinger liquid.Comment: 1 page, Revte
Reply to the Comment on "Enhancement of the Tunneling Density of States in Tomonaga-Luttinger Liquids"
In their comment Fabrizio and Gogolin dispute our result of the enhancement
of the tunneling density of states in a Tomonaga-Luttinger liquid at the
location of a backward scattering defect [Phys. Rev. Lett. 76, 4230(1996);
cond-mat/9601020]. They state that the anticommutativity of the fermion
operators of the left and right moving electrons was not considered properly in
the Letter. We show in the Reply that the result of the Letter can be
reproduced following the Comment when its calculations are performed correctly.
This clearly indicates that the question about the anticommutation relations
was raised by Fabrizio and Gogolin without serious grounds.Comment: Published in PRL as a Reply to the Comment by Fabrizio and Gogolin
(cond-mat/9702080
- …