921 research outputs found

    Duality and Braiding in Twisted Quantum Field Theory

    Full text link
    We re-examine various issues surrounding the definition of twisted quantum field theories on flat noncommutative spaces. We propose an interpretation based on nonlocal commutative field redefinitions which clarifies previously observed properties such as the formal equivalence of Green's functions in the noncommutative and commutative theories, causality, and the absence of UV/IR mixing. We use these fields to define the functional integral formulation of twisted quantum field theory. We exploit techniques from braided tensor algebra to argue that the twisted Fock space states of these free fields obey conventional statistics. We support our claims with a detailed analysis of the modifications induced in the presence of background magnetic fields, which induces additional twists by magnetic translation operators and alters the effective noncommutative geometry seen by the twisted quantum fields. When two such field theories are dual to one another, we demonstrate that only our braided physical states are covariant under the duality.Comment: 35 pages; v2: Typos correcte

    Maxwell-like Lagrangians for higher spins

    Full text link
    We show how implementing invariance under divergence-free gauge transformations leads to a remarkably simple Lagrangian description of massless bosons of any spin. Our construction covers both flat and (A)dS backgrounds and extends to tensors of arbitrary mixed-symmetry type. Irreducible and traceless fields produce single-particle actions, while whenever trace constraints can be dispensed with the resulting Lagrangians display the same reducible, multi-particle spectra as those emerging from the tensionless limit of free open-string field theory. For all explored options the corresponding kinetic operators take essentially the same form as in the spin-one, Maxwell case.Comment: 77 pages, revised version. Erroneous interpretation and proof of the gauge-fixing procedure for mixed-symmetry fields corrected. As a consequence, the mixed-symmetry, one-particle Lagrangians are to be complemented with conditions on the divergences of the fields; all other conclusions unchanged. Additional minor changes including references added. To appear in JHE

    On the cubic interactions of massive and partially-massless higher spins in (A)dS

    Get PDF
    Cubic interactions of massive and partially-massless totally-symmetric higher-spin fields in any constant-curvature background of dimension greater than three are investigated. Making use of the ambient-space formalism, the consistency condition for the traceless and transverse parts of the parity-invariant interactions is recast into a system of partial differential equations. The latter can be explicitly solved for given s_1-s_2-s_3 couplings and the 2-2-2 and 3-3-2 examples are provided in detail for general choices of the masses. On the other hand, the general solutions for the interactions involving massive and massless fields are expressed in a compact form as generating functions of all the consistent couplings. The St\"uckelberg formulation of the cubic interactions as well as their massless limits are also analyzed.Comment: 42 pages, 2 tables, LaTex. Comments on two-derivative couplings involving partially-massless spin-2 fields added, typos corrected, references added. v2: final version to appear in JHEP. v3: formulae (3.4) and (3.9) correcte

    The Stokes Phenomenon and Quantum Tunneling for de Sitter Radiation in Nonstationary Coordinates

    Full text link
    We study quantum tunneling for the de Sitter radiation in the planar coordinates and global coordinates, which are nonstationary coordinates and describe the expanding geometry. Using the phase-integral approximation for the Hamilton-Jacobi action in the complex plane of time, we obtain the particle-production rate in both coordinates and derive the additional sinusoidal factor depending on the dimensionality of spacetime and the quantum number for spherical harmonics in the global coordinates. This approach resolves the factor of two problem in the tunneling method.Comment: LaTex 10 pages, no figur

    Protein interactions in Xenopus germ plasm RNP particles

    Get PDF
    Hermes is an RNA-binding protein that we have previously reported to be found in the ribonucleoprotein (RNP) particles of Xenopus germ plasm, where it is associated with various RNAs, including that encoding the germ line determinant Nanos1. To further define the composition of these RNPs, we performed a screen for Hermes-binding partners using the yeast two-hybrid system. We have identified and validated four proteins that interact with Hermes in germ plasm: two isoforms of Xvelo1 (a homologue of zebrafish Bucky ball) and Rbm24b and Rbm42b, both RNA-binding proteins containing the RRM motif. GFP-Xvelo fusion proteins and their endogenous counterparts, identified with antisera, were found to localize with Hermes in the germ plasm particles of large oocytes and eggs. Only the larger Xvelo isoform was naturally found in the Balbiani body of previtellogenic oocytes. Bimolecular fluorescence complementation (BiFC) experiments confirmed that Hermes and the Xvelo variants interact in germ plasm, as do Rbm24b and 42b. Depletion of the shorter Xvelo variant with antisense oligonucleotides caused a decrease in the size of germ plasm aggregates and loosening of associated mitochondria from these structures. This suggests that the short Xvelo variant, or less likely its RNA, has a role in organizing and maintaining the integrity of germ plasm in Xenopus oocytes. While GFP fusion proteins for Rbm24b and 42b did not localize into germ plasm as specifically as Hermes or Xvelo, BiFC analysis indicated that both interact with Hermes in germ plasm RNPs. They are very stable in the face of RNA depletion, but additive effects of combinations of antisense oligos suggest they may have a role in germ plasm structure and may influence the ability of Hermes protein to effectively enter RNP particles

    Higher-Spin Fermionic Gauge Fields and Their Electromagnetic Coupling

    Get PDF
    We study the electromagnetic coupling of massless higher-spin fermions in flat space. Under the assumptions of locality and Poincare invariance, we employ the BRST-BV cohomological methods to construct consistent parity-preserving off-shell cubic 1-s-s vertices. Consistency and non-triviality of the deformations not only rule out minimal coupling, but also restrict the possible number of derivatives. Our findings are in complete agreement with, but derived in a manner independent from, the light-cone-formulation results of Metsaev and the string-theory-inspired results of Sagnotti-Taronna. We prove that any gauge-algebra-preserving vertex cannot deform the gauge transformations. We also show that in a local theory, without additional dynamical higher-spin gauge fields, the non-abelian vertices are eliminated by the lack of consistent second-order deformations.Comment: 44 pages; references added, minor changes made, to appear in JHE
    • …
    corecore